login
A296709
Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.
5
1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 99, 100, 108, 109, 110, 117, 118, 119, 120, 126, 127, 128, 129, 130, 135, 136, 137, 138, 139, 140, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158
OFFSET
1,2
COMMENTS
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296709-A296711 partition the natural numbers. See the guide at A296712.
LINKS
EXAMPLE
The base-9 digits of 158 are 1,8,5; here #(rises) = 1 and #(falls) = 1, so 158 is in the sequence.
MATHEMATICA
z = 200; b = 9; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296709 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296710 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296711 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 08 2018
STATUS
approved