|
|
A296708
|
|
Numbers n whose base-8 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.
|
|
4
|
|
|
8, 16, 17, 24, 25, 26, 32, 33, 34, 35, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 64, 72, 128, 136, 137, 144, 145, 192, 200, 201, 208, 209, 210, 216, 217, 218, 256, 264, 265, 272, 273, 274, 280, 281, 282, 283, 288, 289, 290, 291
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296706-A296707 partition the natural numbers. See the guide at A296712.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
The base-8 digits of 291 are 4,4,3; here #(rises) = 0 and #(falls) = 1, so that 291 is in the sequence.
|
|
MATHEMATICA
|
z = 200; b = 8; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296706 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296707 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296708 *)
|
|
CROSSREFS
|
Cf. A296707, A296708, A296712.
Sequence in context: A319317 A091251 A297264 * A297141 A004779 A247061
Adjacent sequences: A296705 A296706 A296707 * A296709 A296710 A296711
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
Clark Kimberling, Jan 08 2018
|
|
STATUS
|
approved
|
|
|
|