The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212561 Number of (w,x,y,z) with all terms in {1,...,n} and w + x = 2y + 2z. 3
 0, 0, 1, 5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Probably related to A199771 and A200252. For a guide to related sequences, see A211795. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1). FORMULA a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). a(n) = (2*n^3-2*n^2+n-1-(n-1)*(-1)^n)/8 = (n-1)*(2*n^2+1-(-1)^n)/8. - Luce ETIENNE, Jul 26 2014 G.f.: x^2*(x^3+x^2+3*x+1) / ((x-1)^4*(x+1)^2). - Colin Barker, Feb 17 2015 MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w + x == 2 y + 2 z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]]   (* A212561 *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 1, 5, 12, 26}, 50] (* Harvey P. Dale, Dec 04 2016 *) PROG (PARI) concat([0, 0], Vec(x^2*(x^3+x^2+3*x+1)/((x-1)^4*(x+1)^2) + O(x^100))) \\ Colin Barker, Feb 17 2015 CROSSREFS Cf. A211795. Sequence in context: A073095 A309323 A294017 * A199771 A200252 A176448 Adjacent sequences:  A212558 A212559 A212560 * A212562 A212563 A212564 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 01:07 EDT 2021. Contains 346429 sequences. (Running on oeis4.)