Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 28 2020 11:10:29
%S 0,1,16,78,240,577,1182,2172,3680,5865,8900,12986,18336,25193,33810,
%T 44472,57472,73137,91800,113830,139600,169521,204006,243508,288480,
%U 339417,396812,461202,533120,613145,701850,799856,907776,1026273,1156000,1297662,1451952
%N Number of (w,x,y,z) with all terms in {1,...,n} and w+x<=2y+2z.
%C For a guide to related sequences, see A211795.
%H Colin Barker, <a href="/A212563/b212563.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-5,5,1,-3,1).
%F a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
%F From _Colin Barker_, Dec 10 2015: (Start)
%F a(n) = 1/96*(82*n^4+36*n^3-16*n^2-6*((-1)^n-1)*n+9*((-1)^n-1)).
%F G.f.: x*(1+13*x+31*x^2+27*x^3+10*x^4) / ((1-x)^5*(1+x)^2).
%F (End)
%t t = Compile[{{n, _Integer}}, Module[{s = 0},
%t (Do[If[w + x <= 2 y + 2 z, s = s + 1],
%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
%t Map[t[#] &, Range[0, 40]] (* A212563 *)
%t LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,1,16,78,240,577,1182},40] (* _Harvey P. Dale_, Aug 28 2020 *)
%o (PARI) concat(0, Vec(x*(1+13*x+31*x^2+27*x^3+10*x^4) / ((1-x)^5*(1+x)^2) + O(x^50))) \\ _Colin Barker_, Dec 10 2015
%Y Cf. A211795.
%K nonn,easy
%O 0,3
%A _Clark Kimberling_, May 21 2012