Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 27 2024 04:16:18
%S 0,2,22,92,246,520,950,1572,2422,3536,4950,6700,8822,11352,14326,
%T 17780,21750,26272,31382,37116,43510,50600,58422,67012,76406,86640,
%U 97750,109772,122742,136696,151670,167700,184822,203072,222486,243100
%N Number of (w,x,y,z) with all terms in {0,...,n} and (least gapsize)=1.
%C The gapsizes are |w-x|, |x-y|, |y-z|. Every term is even. For a guide to related sequences, see A211795.
%H Vincenzo Librandi, <a href="/A212894/b212894.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = 2*(n-1)*(3*n^2-3*n+5) with n>1, a(0)=0, a(1)=2.
%F a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>=6.
%F G.f.: f(x)/g(x), where f(x)=2*(x+7*x^2+8*x^3+x^4+x^5) and g(x)=(1-x)^4.
%t t = Compile[{{n, _Integer}}, Module[{s = 0},
%t (Do[If[Min[Abs[w - x], Abs[x - y], Abs[y - z]] == 1, s = s + 1],
%t {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
%t m = Map[t[#] &, Range[0, 40]] (* A212894 *)
%t m/2 (* integers *)
%t CoefficientList[Series[2*(x+7*x^2+8*x^3+x^4+x^5) /(1-x)^4,{x,0,50}],x] (* _Vincenzo Librandi_, Jul 04 2012 *)
%o (Magma) I:=[0, 2, 22, 92, 246, 520]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Jul 04 2012
%Y Cf. A211795.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, May 30 2012