login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281648 (Numerator of Bernoulli(2*n)) read mod n. 2
0, 1, 1, 3, 0, 5, 0, 7, 1, 9, 0, 5, 0, 7, 5, 15, 0, 11, 0, 9, 1, 11, 0, 13, 0, 13, 19, 7, 0, 19, 0, 31, 11, 17, 0, 11, 0, 19, 13, 13, 0, 37, 0, 33, 35, 23, 0, 37, 0, 39, 34, 39, 0, 11, 5, 35, 19, 29, 0, 29, 0, 31, 61, 63, 0, 55, 0, 51, 23, 21, 0, 43, 0, 37, 50, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Conjecture: a(n) == n-1 (mod n) if only if n = 6, 10 or n = 2^k for k >= 0. This is true for n <= 1024. - Seiichi Manyama, Jan 27 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A000367(n) mod n.

MATHEMATICA

f[n_] := Mod[Numerator[BernoulliB[2 n]], n]; Array[f, 77] (* Robert G. Wilson v, Jan 26 2017 *)

PROG

(Ruby)

def bernoulli(n)

ary = []

a = []

(0..n).each{|i|

a << 1r / (i + 1)

i.downto(1){|j| a[j - 1] = j * (a[j - 1] - a[j])}

ary << a[0]

}

ary

end

def A281648(n)

a = bernoulli(2 * n)

(1..n).map{|i| a[2 * i].numerator % i}

end

(PARI) a(n)=numerator(bernfrac(2*n))%n \\ Charles R Greathouse IV, Jan 27 2017

CROSSREFS

Cf. A000367, A060976, A069040, A070192, A070193, A281662.

Sequence in context: A049283 A141162 A160035 * A353154 A325962 A210451

Adjacent sequences: A281645 A281646 A281647 * A281649 A281650 A281651

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Jan 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 05:21 EDT 2023. Contains 361634 sequences. (Running on oeis4.)