

A070193


Numbers n such that gcd(3n,8^n+1) = 3 but n does not divide the numerator of B(2n) (the Bernoulli numbers).


4



253, 1081, 1771, 2485, 2783, 3289, 4301, 4807, 5405, 5819, 7337, 7567, 7843, 9361, 10373, 10879, 11891, 12397, 12425, 13409, 13861, 14053, 14927, 15433, 17395, 17963, 18145, 18377, 18469, 19481, 19987, 20539, 20999, 22517, 23023, 24541
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS



LINKS



MATHEMATICA

testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #1]==0&]=={}; test8[n_] := GCD[3n, PowerMod[8, n, 3n]+1]==3; Select[Range[25000], test8[ # ]&&!testb[ # ]&]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



