

A049283


a(n) is the smallest k such that phi(k)=n, where phi is Euler's totient function.


7



1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 123, 0, 83, 0, 129, 0, 0, 0, 89
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000


EXAMPLE

The smallest k such that phi(k)=2 is k=3, so a(2)=3.


PROG

(PARI) a(n)=if(n>2, for(k=n+1, solve(x=n, 2*n^2, x/(exp(Euler)*log(log(x))+3/log(log(x)))n), if(eulerphi(k)==n, return(k))); 0, 2*n1) \\ Charles R Greathouse IV, Nov 28 2012
(PARI) x=1000; v=vector(x\(exp(Euler)*log(log(x))+3/log(log(x)))); for(n=1, x, t=eulerphi(n); if(t<=#v && !v[t], v[t]=n)); v \\ Charles R Greathouse IV, Nov 28 2012


CROSSREFS

Cf. A000010, A014197.
Sequence in context: A071649 A210524 A325961 * A141162 A160035 A281648
Adjacent sequences: A049280 A049281 A049282 * A049284 A049285 A049286


KEYWORD

nonn


AUTHOR

Jud McCranie, Oct 10 2000


STATUS

approved



