This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049283 a(n) is the smallest k such that phi(k)=n, where phi is Euler's totient function. 7
 1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 123, 0, 83, 0, 129, 0, 0, 0, 89 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 EXAMPLE The smallest k such that phi(k)=2 is k=3, so a(2)=3. PROG (PARI) a(n)=if(n>2, for(k=n+1, solve(x=n, 2*n^2, x/(exp(Euler)*log(log(x))+3/log(log(x)))-n), if(eulerphi(k)==n, return(k))); 0, 2*n-1) \\ Charles R Greathouse IV, Nov 28 2012 (PARI) x=1000; v=vector(x\(exp(Euler)*log(log(x))+3/log(log(x)))); for(n=1, x, t=eulerphi(n); if(t<=#v && !v[t], v[t]=n)); v \\ Charles R Greathouse IV, Nov 28 2012 CROSSREFS Cf. A000010, A014197. Sequence in context: A071649 A210524 A325961 * A141162 A160035 A281648 Adjacent sequences:  A049280 A049281 A049282 * A049284 A049285 A049286 KEYWORD nonn AUTHOR Jud McCranie, Oct 10 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 23:14 EST 2019. Contains 329974 sequences. (Running on oeis4.)