The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160035 Clausen-normalized numerators of the Bernoulli numbers of order 2. 0
 1, 0, -1, 0, 3, 0, -5, 0, 7, 0, -45, 0, 7601, 0, -91, 0, 54255, 0, -745739, 0, 3317609, 0, -17944773, 0, 5436374093, 0, -213827575, 0, 641235447783, 0, -249859397004145, 0, 238988952277727, 0, -85063699326111, 0, 921034504356871708055, 0, -108409774812137683 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Let B_n{^(k)}(x) denote the Bernoulli polynomials of order k, defined by the generating function (t/(exp(t)-1))^k*exp(x*t) = Sum_{n>=0} B_n{^(k)}(x) t^n/n! Bernoulli numbers of order 1 (defined as B_n{^(1)}(1)) can be regarded as a pair of sequences B1_n = N1_n / D1_n with N1_n = A027641, D1_n = A141056 (Clausen). Similarly Bernoulli numbers of order 2 (defined as B_n{^(2)}(1)) can be regarded as a pair of sequences B2_n = N2_n / D2_n with N2_n = this sequence, D2_n = A141056 (Clausen). REFERENCES L. Comtet, Advanced Combinatorics, Reidel, Boston, Mass., 1974. C. Jordan, Calculus of Finite Differences, New York, Chelsea, 1965. N. E. Nørlund, Vorlesungen über Differenzenrechnung, Berlin, Springer-Verlag, 1924. LINKS Table of n, a(n) for n=0..38. EXAMPLE The Clausen-normalized Bernoulli polynomials of order 2 are: 1 2 x - 2 6 x^2 - 12 x + 5 2 x^3 - 6 x^2 + 5 x - 1 30 x^4 - 120 x^3 + 150 x^2 - 60 x + 3 2 x^5 - 10 x^4 + 50/3 x^3 - 10 x^2 + x + 1/3 42 x^6 - 252 x^5 + 525 x^4 - 420 x^3 + 63 x^2 + 42 x - 5 The value of these polynomials at x = 1 gives the sequence. MAPLE aList := proc(n) local g, c, i; g := k -> (t/(exp(t)-1))^k*exp(x*t): c := proc(n) local i; mul(i, i=select(isprime, map(i->i+1, numtheory[divisors](n)))) end: convert(series(g(2), t, n+8), polynom): seq(i!*c(i)*subs(x=1, coeff(%, t, i)), i=0..n) end: aList(38); CROSSREFS Cf. A120282, A132094, A100615 and A027643. Sequence in context: A325961 A049283 A141162 * A281648 A353154 A325962 Adjacent sequences: A160032 A160033 A160034 * A160036 A160037 A160038 KEYWORD sign AUTHOR Peter Luschny, Apr 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 02:45 EDT 2023. Contains 365749 sequences. (Running on oeis4.)