login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of sequence defined by f(0)=1, f(1)=5/4; f(n) = ( (6*n-1)*f(n-1) - (2*n-1)*f(n-2) )/(4n).
2

%I #24 Sep 08 2022 08:45:29

%S 1,5,43,177,2867,11531,92479,370345,11857475,47442055,379582629,

%T 1518418695,24295375159,97182800711,777467420263,3109879375897,

%U 199032580597603,796130905791967,6369049515119561,25476202478636219,407619274119811709,1630477163761481141

%N Numerators of sequence defined by f(0)=1, f(1)=5/4; f(n) = ( (6*n-1)*f(n-1) - (2*n-1)*f(n-2) )/(4n).

%H G. C. Greubel, <a href="/A126963/b126963.txt">Table of n, a(n) for n = 0..500</a>

%H D. Doster, <a href="http://www.jstor.org/stable/2691073">Problem 1318, Three Term Recurrence</a>, Math. Magazine, 63 (1990), 127-128.

%F f(n) = Sum_{k=0..n} binomial(-1/2,k)*(-1/2)^k.

%F f(n) -> sqrt(2) as n -> oo.

%F G.f.: (sqrt(-x)*arccsc(1-x)/sqrt(2)-(Pi*i*sqrt(x))/sqrt(2)^3)/x. - _Vladimir Kruchinin_, Oct 10 2012

%F a(n) = numerator( Sum_{k=0..n} binomial(2*k, k)/8^k ). - _G. C. Greubel_, Jan 29 2020

%p seq( numer( add(binomial(2*k, k)/8^k, k=0..n) ), n=0..25); # _G. C. Greubel_, Jan 29 2020

%t a[n_] := Sqrt[2](1-(Gamma[1/2+n] Hypergeometric2F1[n,1/2+n,1+n,-1])/(Sqrt[Pi] Gamma[1+n])); Table[Numerator[FullSimplify[a[n]]], {n,20}] (* _Gerry Martens_, Aug 09 2015 *)

%t f[n_]:= If[n==0, 1, If[n==1, 5/4, ((6*n-1)*f[n-1]-(2*n-1)*f[n-2])/(4*n)]];

%t Table[Numerator[f[n]], {n, 0, 25}] (* _G. C. Greubel_, Jan 29 2020 *)

%o (PARI) A126963(n)=numerator(sum(k=0,n,binomial(-1/2,k)/(-2)^k)) \\ f(n)=if(n>1,((6*n-1)*f(n-1)-(2*n-1)*f(n-2))/(4*n),(5/4)^n) yields the same results. - _M. F. Hasler_, Aug 11 2015

%o (Magma) [Numerator( &+[Binomial(2*k, k)/8^k: k in [0..n]] ): n in [0..25]]; // _G. C. Greubel_, Jan 29 2020

%o (Sage) [numerator( sum(binomial(2*k, k)/8^k for k in (0..n)) ) for n in (0..25)] # _G. C. Greubel_, Jan 29 2020

%o (GAP) List([0..25], n-> NumeratorRat( Sum([0..n], k-> Binomial(2*k,k)/8^k) )); # _G. C. Greubel_, Jan 29 2020

%Y Denominators are in A088802.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Mar 20 2007