

A003774


Number of spanning trees with degrees 1 and 3 in K_4 X P_n.


0



4, 48, 672, 8496, 106944, 1349760, 17032800, 214925952, 2712031104, 34221651456, 431824387584, 5448956749824, 68757417818112, 867612411420672, 10947928532312064, 138145948088696832
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129154.


LINKS

Table of n, a(n) for n=1..16.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129154.
F. Faase, Counting Hamilton cycles in product graphs
F. Faase, Results from the counting program
Index entries for sequences related to trees


FORMULA

a(n) = 12a(n1) + 4a(n2) + 48a(n3), n>7.
G.f.: 4x*(1+20x^2+12x^3+48x^5+24x^6)/(112x4x^248x^3). [From R. J. Mathar, Dec 16 2008]


CROSSREFS

Sequence in context: A226705 A126967 A098402 * A214819 A211198 A179235
Adjacent sequences: A003771 A003772 A003773 * A003775 A003776 A003777


KEYWORD

nonn


AUTHOR

Frans J. Faase


STATUS

approved



