login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f.: sqrt(1+4*x)/(1+2*x).
4

%I #16 Sep 08 2022 08:45:29

%S 1,0,-4,48,-624,9600,-175680,3790080,-95235840,2752081920,

%T -90328089600,3328103116800,-136191650918400,6131573025177600,

%U -301213549769932800,16030999766605824000,-918678402394841088000,56387623092958789632000,-3690023220507773140992000

%N Expansion of e.g.f.: sqrt(1+4*x)/(1+2*x).

%C A row of an array that is under investigation.

%H G. C. Greubel, <a href="/A126967/b126967.txt">Table of n, a(n) for n = 0..365</a>

%F D-finite with recurrence: a(n) +6*(n-1)*a(n-1) +4*(n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Jan 23 2020

%p seq(coeff(series( sqrt(1+4*x)/(1+2*x), x, n+1)*n!, x, n), n = 0..20); # _G. C. Greubel_, Jan 29 2020

%t nmax=20; CoefficientList[Series[Sqrt[1 + 4 x] / (1 + 2 x), {x, 0, nmax}], x] Range[0, nmax]! (* _Vincenzo Librandi_, Jan 24 2020 *)

%o (Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Sqrt(1+4*x)/(1+2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // _Vincenzo Librandi_, Jan 24 2020

%o (PARI) my(x='x+O('x^30)); Vec(serlaplace( sqrt(1+4*x)/(1+2*x) )) \\ _G. C. Greubel_, Jan 29 2020

%o (Sage) [factorial(n)*( sqrt(1+4*x)/(1+2*x) ).series(x,n+1).list()[n] for n in (0..30)] # _G. C. Greubel_, Jan 29 2020

%Y Cf. A126966.

%K sign

%O 0,3

%A _N. J. A. Sloane_, Mar 22 2007