login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097803
a(n) = 3*(2*n^2 + 1).
2
3, 9, 27, 57, 99, 153, 219, 297, 387, 489, 603, 729, 867, 1017, 1179, 1353, 1539, 1737, 1947, 2169, 2403, 2649, 2907, 3177, 3459, 3753, 4059, 4377, 4707, 5049, 5403, 5769, 6147, 6537, 6939, 7353, 7779, 8217, 8667, 9129, 9603, 10089, 10587, 11097, 11619
OFFSET
0,1
COMMENTS
a(n) is also the number of Arnoux-Rauzy factors of length (n+1) over a 3-letter alphabet. - Genevieve Paquin (genevieve.paquin(AT)univ-savoie.fr), Nov 07 2008
LINKS
F. Mignosi and L. Q. Zamboni, On the number of Arnoux-Rauzy words, Acta arith., 101 (2002), no. 2, 121-129. [From Genevieve Paquin (genevieve.paquin(AT)univ-savoie.fr), Nov 07 2008]
FORMULA
a(0)=3, a(1)=9, a(2)=27, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 29 2011
G.f.: -((3*(3*x^2+1))/(x-1)^3). - Harvey P. Dale, Dec 29 2011
MATHEMATICA
Table[ 3(2*n^2 + 1), {n, 0, 44}] (* Robert G. Wilson v, Aug 26 2004 *)
3(2Range[0, 50]^2+1) (* or *) LinearRecurrence[{3, -3, 1}, {3, 9, 27}, 50] (* Harvey P. Dale, Dec 29 2011 *)
PROG
(PARI) a(n)=3*(2*n^2+1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A097802.
Sequence in context: A093546 A015955 A357008 * A227097 A201202 A260938
KEYWORD
nonn,easy
AUTHOR
George E. Antoniou, Aug 25 2004
EXTENSIONS
More terms from Robert G. Wilson v and Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 26 2004
STATUS
approved