login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379105
Triangular array read by rows. T(n,k) is the number of n X n matrices T over GF(2) such that there are exactly 2^k vectors v in GF(2)^n with Tv=v, n>=0, 0<=k<=n.
0
1, 1, 1, 6, 9, 1, 168, 294, 49, 1, 20160, 37800, 7350, 225, 1, 9999360, 19373760, 4036200, 144150, 961, 1, 20158709760, 39687459840, 8543828160, 326932200, 2542806, 3969, 1, 163849992929280, 325139829719040, 71124337751040, 2812314375360, 23435953128, 42677334, 16129, 1
OFFSET
0,4
COMMENTS
Sum_{k=0..n} T(n,k)*2^k = (2^(n+1)-1)*2^(n^2-n) so that as n->oo the average number of fixed points is 2.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
6, 9, 1;
168, 294, 49, 1;
20160, 37800, 7350, 225, 1;
9999360, 19373760, 4036200, 144150, 961, 1;
...
MATHEMATICA
nn = 5; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] :=Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; L=Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; g[u_, v_, deg_] := Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, L]]; Map[Select[#, # > 0 &] &, Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, 1, 1] g[u, v, 1] Product[g[u, 1, deg]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u, v}]] // Grid
CROSSREFS
Cf. A060867 (T(n,n-1)), A002884 (column k=0), A086699 (column k=1), A346381.
Row sums give A002416.
Sequence in context: A179593 A117871 A011454 * A274480 A115145 A296478
KEYWORD
nonn,tabl,new
AUTHOR
Geoffrey Critzer, Dec 15 2024
STATUS
approved