OFFSET
0,4
COMMENTS
Sum_{k=0..n} T(n,k)*2^k = (2^(n+1)-1)*2^(n^2-n) so that as n->oo the average number of fixed points is 2.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
6, 9, 1;
168, 294, 49, 1;
20160, 37800, 7350, 225, 1;
9999360, 19373760, 4036200, 144150, 961, 1;
...
MATHEMATICA
nn = 5; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] :=Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; L=Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; g[u_, v_, deg_] := Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, L]]; Map[Select[#, # > 0 &] &, Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, 1, 1] g[u, v, 1] Product[g[u, 1, deg]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u, v}]] // Grid
CROSSREFS
KEYWORD
AUTHOR
Geoffrey Critzer, Dec 15 2024
STATUS
approved