login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346381
Triangle read by rows. T(n,k) is the number of invertible n X n matrices over GF(2) such that the dimension of the eigenspace corresponding to eigenvalue 1 is k, 0 <= k <= n, n >= 0.
1
1, 0, 1, 2, 3, 1, 48, 98, 21, 1, 5824, 11640, 2590, 105, 1, 2887680, 5775424, 1283400, 52390, 465, 1, 5821595648, 11643190272, 2587376064, 105607080, 938742, 1953, 1, 47317927329792, 94635854692352, 21030189917184, 858375102144, 7630000488, 15879318, 8001, 1
OFFSET
0,4
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
For n>=1, Sum_{k=0..n} T(n,k)*2^k = 2*A002884(n). - Geoffrey Critzer, Jan 10 2025
EXAMPLE
Triangle begins:
1;
0, 1;
2, 3, 1;
48, 98, 21, 1;
5824, 11640, 2590, 105, 1;
2887680, 5775424, 1283400, 52390, 465, 1;
...
T(2,0) = 2 because {{0, 1}, {1, 1}}, {{1, 1}, {1, 0}} do not have 1 as an eigenvalue.
T(2,1) = 3 because {{0, 1}, {1, 0}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}} have 1 as an eigenvalue with corresponding eigenspace of dimension 1.
T(2,2) = 1 because {{1, 0}, {0, 1}} fixes the entire space.
MATHEMATICA
nn = 15; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; A001037 =
Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
g[u_, v_] := Total[Map[v^Length[#] u^Total[#]/aut[1, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]]; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}] // Grid
CROSSREFS
Cf. A002820 (column k=0), A002884 (row sums).
Sequence in context: A350624 A009108 A016537 * A106385 A363841 A291293
KEYWORD
nonn,tabl,changed
AUTHOR
Geoffrey Critzer, Jul 14 2021
STATUS
approved