login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows. T(n,k) is the number of invertible n X n matrices over GF(2) such that the dimension of the eigenspace corresponding to eigenvalue 1 is k, 0 <= k <= n, n >= 0.
1

%I #23 Jan 11 2025 18:50:07

%S 1,0,1,2,3,1,48,98,21,1,5824,11640,2590,105,1,2887680,5775424,1283400,

%T 52390,465,1,5821595648,11643190272,2587376064,105607080,938742,1953,

%U 1,47317927329792,94635854692352,21030189917184,858375102144,7630000488,15879318,8001,1

%N Triangle read by rows. T(n,k) is the number of invertible n X n matrices over GF(2) such that the dimension of the eigenspace corresponding to eigenvalue 1 is k, 0 <= k <= n, n >= 0.

%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

%F For n>=1, Sum_{k=0..n} T(n,k)*2^k = 2*A002884(n). - _Geoffrey Critzer_, Jan 10 2025

%e Triangle begins:

%e 1;

%e 0, 1;

%e 2, 3, 1;

%e 48, 98, 21, 1;

%e 5824, 11640, 2590, 105, 1;

%e 2887680, 5775424, 1283400, 52390, 465, 1;

%e ...

%e T(2,0) = 2 because {{0, 1}, {1, 1}}, {{1, 1}, {1, 0}} do not have 1 as an eigenvalue.

%e T(2,1) = 3 because {{0, 1}, {1, 0}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}} have 1 as an eigenvalue with corresponding eigenspace of dimension 1.

%e T(2,2) = 1 because {{1, 0}, {0, 1}} fixes the entire space.

%t nn = 15; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 =

%t Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];

%t g[u_, v_] := Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}] // Grid

%Y Cf. A002820 (column k=0), A002884 (row sums).

%K nonn,tabl,changed

%O 0,4

%A _Geoffrey Critzer_, Jul 14 2021