login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009108
Expansion of e.g.f. cos(x)/cosh(log(1+x)).
1
1, 0, -2, 3, 1, -30, 164, -525, -391, 22428, -206686, 1039995, 1161337, -96216978, 1241356024, -8517557685, -12681799919, 1373978443800, -22791296600794, 198084321525267, 368659923645521, -49339565916861990
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n! * (exp(-1) * sin(1 + (3*n+1)*Pi/4) - exp(1) * sin(1 - (3*n+1)*Pi/4)) / 2^((n+1)/2). - Vaclav Kotesovec, Jul 28 2018
a(n)+a(n+2*p) is divisible by p for any prime p. - Mark van Hoeij, Jun 13 2019
MATHEMATICA
With[{nmax = 30}, CoefficientList[Series[Cos[x]/Cosh[Log[1 + x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 26 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(cos(x)/cosh(log(1+x)))) \\ G. C. Greubel, Jul 26 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(x)/Cosh(Log(1+x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 26 2018
CROSSREFS
Sequence in context: A145142 A137738 A350624 * A016537 A346381 A106385
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved