login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274480
Triangle T, read by rows, where T(n,k) = [T^(3^k)](n-k,0) * (3^k)^(n-k) for n>=k>=0 such that row n of the 3^(n-1)-th root of T consists solely of integers given by: [T^( 1/3^(n-1) )](n,k) = (3^k)^(n-k) for n>=0.
2
1, 1, 1, 6, 9, 1, 201, 405, 81, 1, 43668, 108135, 30618, 729, 1, 66109077, 192068901, 69343209, 2421009, 6561, 1, 734489285949, 2429869742037, 1055300462694, 48233053719, 194507406, 59049, 1, 62046990518394987, 228954896130792105, 115264903237128999, 6477074077667103, 34597553648841, 15712053165, 531441, 1, 40856017343540753635650, 165659766162266374832070, 94247154749939415534567, 6256382300132639786847, 41519988501386251608, 25084397696688135, 1271514044898, 4782969, 1
OFFSET
0,4
FORMULA
The value of (3^m)-th matrix power of T at row n and column k is related to row n+m and column k+m of T by: [T^(3^m)](n,k) = T(n+m,k+m)/(3^m)^(n-k) for m>=0.
EXAMPLE
Below we illustrate this triangle and its 2 main properties:
(1) [T^(3^m)](n,k) = T(n+m,k+m)/(3^m)^(n-k) for m>=0;
(2) [T^( 1/3^(n-1) )](n,k) = (3^k)^(n-k) for n>=k>=0.
This triangle begins:
1;
1, 1;
6, 9, 1;
201, 405, 81, 1;
43668, 108135, 30618, 729, 1;
66109077, 192068901, 69343209, 2421009, 6561, 1;
734489285949, 2429869742037, 1055300462694, 48233053719, 194507406, 59049, 1;
62046990518394987, 228954896130792105, 115264903237128999, 6477074077667103, 34597553648841, 15712053165, 531441, 1;
40856017343540753635650, 165659766162266374832070, 94247154749939415534567, 6256382300132639786847, 41519988501386251608, 25084397696688135, 1271514044898, 4782969, 1;
...
(1) Illustrate [T^(3^m)](n,k) = T(n+m,k+m)/(3^m)^(n-k) as follows.
Matrix cube, T^3, begins:
1;
3, 1;
45, 27, 1;
4005, 3402, 243, 1;
2371221, 2568267, 269001, 2187, 1;
9999463959, 13028400774, 1786409397, 21611934, 19683, 1; ...
where [T^(3^1)](n,k) = T(n+1,k+1)/3^(n-k).
Matrix 9th power, T^9, begins:
1,
9, 1,
378, 81, 1,
95121, 29889, 729, 1,
160844454, 66163311, 2401326, 6561, 1,
1952021257551, 987208364223, 47458921329, 193975965, 59049, 1; ...
where [T^(3^2)](n,k) = T(n+2,k+2)/9^(n-k).
Matrix 27th power, T^27, begins:
1,
27, 1,
3321, 243, 1,
2450493, 266814, 2187, 1,
12187757583, 1757737827, 21552885, 19683, 1,
436018039571421, 78127183452888, 1274419432845, 1744189362, 177147, 1; ...
where [T^(3^3)](n,k) = T(n+3,k+3)/27^(n-k).
...
(2) Illustrate [T^( 1/3^(n-1) )](n,k) = (3^k)^(n-k) as follows.
Matrix cube root, T^(1/3), begins:
1;
1/3, 1;
1, 3, 1; <== row 2: [T^(1/3^1)](2,k) = (3^k)^(2-k), k=0..2
13, 54, 27, 1;
1083, 5427, 3645, 243, 1;
601329, 3537108, 2919645, 275562, 2187, 1;
2383212465, 16064505711, 15557580981, 1872266643, 21789081, 19683, 1; ...
Matrix 9th root, T^(1/9), begins:
1;
1/9, 1;
2/9, 1, 1;
1, 9, 9, 1; <== row 3: [T^(1/3^2)](3,k) = (3^k)^(3-k), k=0..3
34, 351, 486, 81, 1;
6907, 87723, 146529, 32805, 729, 1;
9623667, 146122947, 286505748, 78830415, 2480058, 6561, 1;
...
Matrix 27th root, T^(1/27), begins:
1;
1/27, 1;
5/81, 1/3, 1;
5/81, 2, 3, 1;
1, 27, 81, 27, 1; <== row 4: [T^(1/3^3)](4,k) = (3^k)^(4-k), k=0..4
193/3, 2754, 9477, 4374, 243, 1;
26497, 1678401, 7105563, 3956283, 295245, 2187, 1;
...
Matrix 81st root, T^(1/81), begins:
1;
1/81, 1;
14/729, 1/9, 1;
-13/2187, 5/9, 1, 1;
-16/243, 5/3, 18, 9, 1;
1, 81, 729, 729, 81, 1; <== row 5: [T^(1/3^4)](5,k) = (3^k)^(5-k), k=0..5
43/3, 15633, 223074, 255879, 39366, 729, 1;
...
PROG
(PARI) {T(n, k)=local(M=Mat(1), L, R); for(i=1, n,
L=sum(j=1, #M, -(M^0-M)^j/j); M=sum(j=0, #L, (L/3^(#L-1))^j/j!); R=matrix(#M+1, #M+1, r, c,
if(r>=c, if(r<=#M, M[r, c], 3^((c-1)*(#M+1-c))))); M=R^(3^(#M-1)) ); M[n+1, k+1]}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Sequence in context: A117871 A011454 A379105 * A115145 A296478 A195403
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 24 2016
STATUS
approved