login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274482
E.g.f. satisfies: A(x)^2 = A( x^2*exp(2*x) ).
1
1, 2, 6, 40, 320, 2976, 35392, 538112, 9810432, 200903680, 4480990976, 107974474752, 2804574622720, 78474060105728, 2366867031521280, 77011634301730816, 2702517873238802432, 102101344967992541184, 4139003906606265204736, 179219001275949107118080, 8245453502533567172837376, 400905721912603103762317312, 20495451270608555635778256896, 1096768710243163144517540904960, 61205572460929693462200057856000, 3551250424196976573288927331352576, 213729944352034835154759793458020352, 13318442043189965481553192153652396032
OFFSET
1,2
COMMENTS
Compare g.f. to: C(x)^2 = C( x^2/(1 - 2*x)^2 ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
E.g.f. A(x) satisfies: A( LambertW(x) )^2 = A(x^2).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 40*x^4/4! + 320*x^5/5! + 2976*x^6/6! + 35392*x^7/7! + 538112*x^8/8! + 9810432*x^9/9! + 200903680*x^10/10! + 4480990976*x^11/11! + 107974474752*x^12/12! +...
such that A( x^2*exp(2*x) ) = A(x)^2.
RELATED SERIES.
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 72*x^4/4! + 640*x^5/5! + 6960*x^6/6! + 85344*x^7/7! + 1226624*x^8/8! + 21007872*x^9/9! + 419834880*x^10/10! + 9457930240*x^11/11! + 233914103808*x^12/12! +...
A( LambertW(x) ) = x + 3*x^3/3! + 45*x^5/5! + 3255*x^7/7! + 341145*x^9/9! + 54064395*x^11/11! + 14152823685*x^13/13! + 5781948947775*x^15/15! + 3250182676165425*x^17/17! + 2276432340328221075*x^19/19! + 1912646738585104847325*x^21/21! + 1908799239468337485243975*x^23/23! +...
which equals sqrt( A(x^2) ).
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2*exp(2*x +x*O(x^n)) ) ) ); n!*polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A098854 A056787 A098852 * A274277 A120592 A277476
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 11 2016
STATUS
approved