login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274479
G.f. satisfies: A(x)^2 = A( x^2/(1 - 2*x - 4*x^2) ).
3
1, 1, 4, 10, 34, 106, 361, 1219, 4252, 14932, 53263, 191533, 695233, 2540617, 9344050, 34546672, 128330533, 478653973, 1791816967, 6729202603, 25344884479, 95707901503, 362269464487, 1374203633335, 5223097370170, 19888174932226, 75856437036451, 289780169876749, 1108607284380835, 4246966803249139, 16290547536335716, 62562701811659506, 240540845892246253, 925825162823212429, 3567069859670052457, 13756707569545384033
OFFSET
1,3
COMMENTS
Compare g.f. with the identities:
(1) F(x)^2 = F( x^2/(1 - 2*x + 2*x^2) ) when F(x) = x/(1-x).
(2) M(x)^2 = M( x^2/(1 - 2*x) ) when M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x) is a g.f. of the Motzkin numbers (A001006).
a(n) = 1 (mod 3) for n>=1 (conjecture).
Radius of convergence of g.f. A(x) is r = 1/4 where r = r^2/(1-2*r-4*r^2) with A(1/4) = 1.
What is the limit a(n)/A000108(n) ? Note that A000108(n) = binomial(2*n,n)/(n+1) is the n-th Catalan number.
LINKS
FORMULA
G.f. A(x) satisfies: A( x/(1 + x + 3*x^2) )^2 = A( x^2/(1 + x^2 + 9*x^4) ).
Let G(x) denote the g.f. of A264412, where G(x)^2 = G(x^2) + 6*x, then g.f. A(x) satisfies:
(1) A(x) = x/(1-x) * G( A(x)^2 ),
(2) G(x^2) = x/Series_Reversion(A(x)) - x,
(3) A( x/(G(x^2) + x) ) = x,
(4) A(x)^2/(G(A(x)^4) + A(x)^2) = x^2/(1 - 2*x - 4*x^2).
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 10*x^4 + 34*x^5 + 106*x^6 + 361*x^7 + 1219*x^8 + 4252*x^9 + 14932*x^10 + 53263*x^11 + 191533*x^12 +...
such that A( x^2/(1-2*x-4*x^2) ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 28*x^5 + 104*x^6 + 360*x^7 + 1306*x^8 + 4688*x^9 + 17106*x^10 + 62548*x^11 + 230570*x^12 + 853512*x^13 + 3176161*x^14 + 11866142*x^15 +...
The series reversion of the g.f. A(x) begins:
Series_Reversion(A(x)) = x - x^2 - 2*x^3 + 5*x^4 + 4*x^5 - 22*x^6 - 5*x^7 + 95*x^8 - 17*x^9 - 412*x^10 + 220*x^11 + 1790*x^12 - 1559*x^13 - 7771*x^14 +...
which is related to A264412 by:
x/Series_Reversion(A(x)) = 1 + x + 3*x^2 - 3*x^4 + 9*x^6 - 33*x^8 + 126*x^10 - 513*x^12 + 2214*x^14 - 9876*x^16 + 45045*x^18 - 209493*x^20 +...+ A264412(n)*x^(2*n) +...
The g.f. G(x) of A264412 begins:
G(x) = 1 + 3*x - 3*x^2 + 9*x^3 - 33*x^4 + 126*x^5 - 513*x^6 + 2214*x^7 - 9876*x^8 + 45045*x^9 - 209493*x^10 +...
where G(x)^2 = G(x^2) + 6*x.
Also, we have A(x/(1 + x + 3*x^2))^2 = A(x^2/(1 + x^2 + 9*x^4)), where the series begin:
A(x/(1 + x + 3*x^2)) = x - 3*x^5 + 3*x^9 + 81*x^13 - 840*x^17 + 3960*x^21 + 711*x^25 - 152145*x^29 + 1009254*x^33 - 1772820*x^37 + 1991277*x^41 +...
A(x^2/(1 + x^2 + 9*x^4)) = x^2 - 6*x^6 + 15*x^10 + 144*x^14 - 2157*x^18 + 13446*x^22 - 20817*x^26 - 420876*x^30 + 4282764*x^34 - 17051652*x^38 +...
which is equal to A(x/(1 + x + 3*x^2))^2.
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2/(1-2*x-4*x^2 +x*O(x^n)) ) ) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2016
STATUS
approved