login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274477
Column 0 of the matrix logarithm of triangular matrix A134049.
2
0, 1, 2, 2, -64, 424, 100224, -14252064, -2465516544, 5349979645056, -2284492223508480, -32535188427388377600, 248972687504267095941120, 2418389754391936927997061120, -246866186803082697567984052961280, 4557699858167315245689789135670272000, 3413580835595898531780379863867877923225600, -1141255428747144951607112250069973499037619814400, -531525888535995992527627827436464215788606797801062400
OFFSET
0,3
COMMENTS
This sequence forms the coefficients in column 0 of the matrix logarithm L of triangular matrix A134049, where L[n,k] = L[n-k,0] * 2^((n-k+1)*k).
Triangular matrix T = A134049 obeys T(n,k) = [T^(2^k)](n-k,0) * 2^((n-k)*k) for n>=k>=0.
LINKS
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 2*x^3/3! - 64*x^4/4! + 424*x^5/5! + 100224*x^6/6! - 14252064*x^7/7! - 2465516544*x^8/8! + 5349979645056*x^9/9! - 2284492223508480*x^10/10! - 32535188427388377600*x^11/11! + 248972687504267095941120*x^12/12! +...
AS COEFFICIENTS IN MATRIX LOG.
Let L denote the matrix logarithm of triangular matrix A134049, such that exp(L) = A134049, then L begins:
0;
1, 0;
2/2!, 2^2, 0;
2/3!, 2*2^3/2!, 2^4, 0;
-64/4!, 2*2^4/3!, 2*2^6/2!, 2^6, 0;
424/5!, -64*2^5/4!, 2*2^8/3!, 2*2^9/2!, 2^8, 0;
100224/6!, 424*2^6/5!, -64*2^10/4!, 2*2^12/3!, 2*2^12/2!, 2^10, 0;
-14252064/7!, 100224*2^7/6!, 424*2^12/5!, -64*2^15/4!, 2*2^16/3!, 2*2^15/2!, 2^12, 0;
-2465516544/8!, -14252064*2^8/7!, 100224*2^14/6!, 424*2^18/5!, -64*2^20/4!, 2*2^20/3!, 2*2^18/2!, 2^14, 0;
5349979645056/9!, -2465516544*2^9/8!, -14252064*2^16/7!, 100224*2^21/6!, 424*2^24/5!, -64*2^25/4!, 2*2^24/3!, 2*2^21/2!, 2^16, 0; ...
in which L[n,k] = L[n-k,0] * 2^((n-k+1)*k) for n>=0, k=0..n.
Triangular matrix A134049 begins:
1;
1, 1;
3, 4, 1;
23, 40, 16, 1;
512, 1072, 576, 64, 1;
34939, 84736, 56064, 8704, 256, 1;
7637688, 20930240, 16261120, 3190784, 135168, 1024, 1; ...
PROG
(PARI) /* Print as column 0 of triangle A134049 */
{LOGT(n, k)=local(M=Mat(1), L, R);
for(i=1, n,
L=sum(j=1, #M, -(M^0 - M)^j/j);
M=sum(j=0, #L, (L/2^(#L-1))^j/j!);
R=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], 2^((c-1)*(#M+1-c)))));
M=R^(2^(#M-1)) );
L=sum(j=1, #M, -(M^0 - M)^j/j);
L[n+1, k+1]}
for(n=0, 20, print1(LOGT(n, 0)*n!, ", "));
CROSSREFS
Cf. A134049.
Sequence in context: A378302 A286377 A187024 * A231808 A306063 A028372
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 01 2016
STATUS
approved