Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 01 2016 17:35:36
%S 0,1,2,2,-64,424,100224,-14252064,-2465516544,5349979645056,
%T -2284492223508480,-32535188427388377600,248972687504267095941120,
%U 2418389754391936927997061120,-246866186803082697567984052961280,4557699858167315245689789135670272000,3413580835595898531780379863867877923225600,-1141255428747144951607112250069973499037619814400,-531525888535995992527627827436464215788606797801062400
%N Column 0 of the matrix logarithm of triangular matrix A134049.
%C This sequence forms the coefficients in column 0 of the matrix logarithm L of triangular matrix A134049, where L[n,k] = L[n-k,0] * 2^((n-k+1)*k).
%C Triangular matrix T = A134049 obeys T(n,k) = [T^(2^k)](n-k,0) * 2^((n-k)*k) for n>=k>=0.
%H Paul D. Hanna, <a href="/A274477/b274477.txt">Table of n, a(n) for n = 0..51</a>
%e E.g.f.: A(x) = x + 2*x^2/2! + 2*x^3/3! - 64*x^4/4! + 424*x^5/5! + 100224*x^6/6! - 14252064*x^7/7! - 2465516544*x^8/8! + 5349979645056*x^9/9! - 2284492223508480*x^10/10! - 32535188427388377600*x^11/11! + 248972687504267095941120*x^12/12! +...
%e AS COEFFICIENTS IN MATRIX LOG.
%e Let L denote the matrix logarithm of triangular matrix A134049, such that exp(L) = A134049, then L begins:
%e 0;
%e 1, 0;
%e 2/2!, 2^2, 0;
%e 2/3!, 2*2^3/2!, 2^4, 0;
%e -64/4!, 2*2^4/3!, 2*2^6/2!, 2^6, 0;
%e 424/5!, -64*2^5/4!, 2*2^8/3!, 2*2^9/2!, 2^8, 0;
%e 100224/6!, 424*2^6/5!, -64*2^10/4!, 2*2^12/3!, 2*2^12/2!, 2^10, 0;
%e -14252064/7!, 100224*2^7/6!, 424*2^12/5!, -64*2^15/4!, 2*2^16/3!, 2*2^15/2!, 2^12, 0;
%e -2465516544/8!, -14252064*2^8/7!, 100224*2^14/6!, 424*2^18/5!, -64*2^20/4!, 2*2^20/3!, 2*2^18/2!, 2^14, 0;
%e 5349979645056/9!, -2465516544*2^9/8!, -14252064*2^16/7!, 100224*2^21/6!, 424*2^24/5!, -64*2^25/4!, 2*2^24/3!, 2*2^21/2!, 2^16, 0; ...
%e in which L[n,k] = L[n-k,0] * 2^((n-k+1)*k) for n>=0, k=0..n.
%e Triangular matrix A134049 begins:
%e 1;
%e 1, 1;
%e 3, 4, 1;
%e 23, 40, 16, 1;
%e 512, 1072, 576, 64, 1;
%e 34939, 84736, 56064, 8704, 256, 1;
%e 7637688, 20930240, 16261120, 3190784, 135168, 1024, 1; ...
%o (PARI) /* Print as column 0 of triangle A134049 */
%o {LOGT(n, k)=local(M=Mat(1), L, R);
%o for(i=1, n,
%o L=sum(j=1, #M, -(M^0 - M)^j/j);
%o M=sum(j=0, #L, (L/2^(#L-1))^j/j!);
%o R=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], 2^((c-1)*(#M+1-c)))));
%o M=R^(2^(#M-1)) );
%o L=sum(j=1, #M, -(M^0 - M)^j/j);
%o L[n+1, k+1]}
%o for(n=0, 20, print1(LOGT(n, 0)*n!, ", "));
%Y Cf. A134049.
%K sign
%O 0,3
%A _Paul D. Hanna_, Jul 01 2016