login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286377
a(n) = A278243(n^2).
4
1, 2, 2, 60, 2, 2520, 60, 138600, 2, 87318000, 2520, 189189000, 60, 792148896000000, 138600, 70756686000, 2, 2288271225240000, 87318000, 944154902157667200000000, 2520, 20388496616888400000000, 189189000, 127170673342713000000, 60, 701323506627727183200000000, 792148896000000, 21149759041410320377056000000000000000, 138600
OFFSET
0,2
COMMENTS
Observation: the restricted growth sequence computed for this sequence seems to give A103391 (apart from the fact that the latter uses starting offset 1 instead of 0. Checked up to n=2048). If this holds, then A103391 works as a more practical filtering sequence (than this sequence, with its huge terms) matching for example to sequences like A286387. Compare also to A286378.
FORMULA
a(n) = A278243(A000290(n)) = A278243(n^2).
PROG
(PARI)
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ This function from Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
A286377(n) = A278243(n*n);
for(n=0, 256, write("b286377.txt", n, " ", A286377(n)));
(Scheme) (define (A286377 n) (A278243 (* n n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2017
STATUS
approved