login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286379
Compound filter ("discard the smallest prime factor" & "signature for 1-runs in base-2"): a(n) = P(A032742(n), A278222(n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = 1.
3
1, 2, 7, 5, 16, 18, 29, 14, 31, 50, 67, 42, 67, 98, 195, 44, 16, 100, 67, 115, 637, 242, 277, 117, 125, 289, 955, 224, 277, 450, 497, 152, 131, 248, 160, 271, 436, 454, 643, 320, 436, 1246, 1771, 550, 2716, 1058, 1129, 375, 160, 655, 1343, 692, 1771, 1918, 3332, 623, 880, 1355, 2557, 1020, 1129, 1922, 3507, 560, 166, 736, 67, 775, 1349, 1070, 277, 856, 436
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(1) = 1, for n > 1, a(n) = (1/2)*(2 + ((A032742(n)+A278222(n))^2) - A032742(n) - 3*A278222(n)).
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A278222(n) = A046523(A005940(1+n));
A286379(n) = if(1==n, n, (1/2)*(2 + ((A032742(n)+A278222(n))^2) - A032742(n) - 3*A278222(n)));
for(n=1, 16384, write("b286379.txt", n, " ", A286379(n)));
(Scheme) (define (A286379 n) (if (= 1 n) n (* (/ 1 2) (+ (expt (+ (A032742 n) (A278222 n)) 2) (- (A032742 n)) (- (* 3 (A278222 n))) 2))))
(Python)
from sympy import factorint, divisors
import math
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def A(n): return n - 2**int(math.floor(math.log(n, 2)))
def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
def a005940(n): return b(n - 1)
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a278222(n): return a046523(a005940(n + 1))
def a(n): return 1 if n==1 else T(divisors(n)[-2], a278222(n)) # Indranil Ghosh, May 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2017
STATUS
approved