|
|
A274485
|
|
Least number of the form x^n + y^n that is the sum of two positive squares in exactly n ways (x, y > 0).
|
|
0
|
|
|
2, 50, 3925, 50881, 625000000, 117650, 1562500000000, 815737282, 3906250000000000, 25937425625, 9765625000000000000, 23298085126577, 24414062500000000000000, 7862651120078217664621465531250, 61035156250000000000000000, 10000000000000001, 152587890625000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
a(2) = 50 because 50 = 1^2 + 7^2 = 5^2 + 5^2.
a(3) = 3925 because 3925 = 12^3 + 13^3 = 9^2 + 62^2 = 26^2 + 57^2 = 30^2 + 55^2.
a(4) = 50881 because 50881 = 4^4 + 15^4 = 16^2 + 225^2 = 65^2 + 216^2 = 120^2 + 191^2 = 159^2 + 160^2.
|
|
MATHEMATICA
|
nR[n_]:= (SquaresR[2, n]+ Plus@@ Pick[{-4, 4}, IntegerQ/@ Sqrt[{n, n/2} ]])/8; a[1]=2; a[n_]:= Block[{m = 10^3, s, z}, While[{} == (s = Reap[ Do[ If[nR[z = x^n + y^n] == n, Sow@ z], {x, Floor[m^(1/n)]}, {y, Min[x, Floor[m - x^n]^(1/n)]}]][[2]]), m *= 2]; Min[s[[1]]]]; Array[a, 10] (* Giovanni Resta, Jun 27 2016 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|