login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379111
a(n) = 1 if bigomega(sigma(n)) is equal to omega(n), otherwise 0.
2
1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
1
FORMULA
Multiplicative with a(p^e) = A010051(sigma(p^e)) = A010051((p^(1+e) - 1)/(p-1)).
a(n) = [A001222(A000203(n)) = A001221(n)], where [ ] is the Iverson bracket.
MATHEMATICA
Table[If[PrimeOmega[DivisorSigma[1, n]]==PrimeNu[n], 1, 0], {n, 105}] (* James C. McMahon, Dec 17 2024 *)
PROG
(PARI) A379111(n) = (bigomega(sigma(n))==omega(n));
(PARI) A379111(n) = { my(f=factor(n)); prod(i=1, #f~, isprime(sigma(f[i, 1]^f[i, 2]))); };
CROSSREFS
Characteristic function of A379112.
Cf. also A324892.
Sequence in context: A355449 A058840 A266155 * A262683 A359816 A378729
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Dec 17 2024
STATUS
approved