login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379109
Dirichlet convolution of A046692 (inverse of sigma) with A336923, where A336923(n) = 1 if sigma(2n) - sigma(n) is a power of 2, otherwise 0.
0
1, -2, -3, 0, -6, 6, -7, 0, -1, 12, -12, 0, -14, 14, 18, 0, -18, 2, -20, 0, 21, 24, -24, 0, 5, 28, 3, 0, -30, -36, -31, 0, 36, 36, 42, 0, -38, 40, 42, 0, -42, -42, -44, 0, 6, 48, -48, 0, -1, -10, 54, 0, -54, -6, 72, 0, 60, 60, -60, 0, -62, 62, 7, 0, 84, -72, -68, 0, 72, -84, -72, 0, -74, 76, -15, 0, 84, -84, -80, 0, 0, 84
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} A046692(d)*A336923(n/d).
PROG
(PARI)
A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2, i], -(f[1, i]+1), if(2==f[2, i], f[1, i], 0))); };
A209229(n) = (n && !bitand(n, n-1));
A336923(n) = A209229(sigma(n+n)-sigma(n));
A379109(n) = sumdiv(n, d, A046692(d)*A336923(n/d));
CROSSREFS
Cf. A000203, A000668, A046692, A054784, A336923, A379108 (Dirichlet inverse).
Sequence in context: A058301 A199601 A231602 * A097287 A233672 A233670
KEYWORD
sign,mult,new
AUTHOR
Antti Karttunen, Dec 17 2024
STATUS
approved