OFFSET
1,3
COMMENTS
T(n,k) is also the number of functions f:{1,2,...,n-1}->{1,2,...,n} that have exactly k elements whose preimage has cardinality = 1.
T(n,n-1) = n! = A000142(n).
Column k = 0 = A060356(n).
Row sums = n^(n-1) = A000169(n).
Refinement given by A248120. Sum coefficients of the partition polynomials with h_1 = (1') = t and all other h_n = (n') = 1 to obtain this entry. - Tom Copeland, Feb 01 2016
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
E.g.f. satisfies A(x,y) = y*x*A(x,y) + x*( exp(A(x,y)) - A(x,y) ).
EXAMPLE
1;
0, 2;
3, 0, 6;
4, 36, 0, 24;
65, 80, 360, 0, 120;
306, 1950, 1200, 3600, 0, 720;
4207, 12852, 40950, 16800, 37800, 0, 5040;
38424, 235592, 359856, 764400, 235200, 423360, 0, 40320;
....0..........0........
....|........./ \.......
....0........0...0......
.../ \.......|..........
..0 0......0..........
T(4,1) = 36. Both of these graphs on 4 nodes have exactly 1 node that has outdegree = 1. There are 12 + 24 = 36 labelings.
MAPLE
with(combinat): C:= binomial:
b:= proc(t, i, u) option remember; `if`(t=0, 1,
`if`(i<2, 0, b(t, i-1, u) +add(multinomial(t, t-i*j, i$j)
*b(t-i*j, i-1, u-j)*u!/(u-j)!/j!, j=1..t/i)))
end:
T:= (n, k)-> C(n, k)*C(n-1, k)*k! *b(n-1-k$2, n-k):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Nov 12 2013
MATHEMATICA
nn=8; Table[Table[Drop[Range[0, nn]!CoefficientList[Series[-ProductLog[x/(-1-x+x y)], {x, 0, nn}], {x, y}], 1][[r, c]], {c, 1, r}], {r, 1, nn}]//Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Nov 11 2013
STATUS
approved