OFFSET
1,2
COMMENTS
Beginning with the second row, dividing each row by n gives the mirror of row n-1 of A141618. Under the exponential transform, the mirror of A141618 is generated, relating the number of connected graphs here to the number of disconnected graphs associated with A141618 (cf. A127671 and A036040). - Tom Copeland, Oct 25 2014
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
N. J. A. Sloane, Transforms
FORMULA
E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.
T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004
T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012
E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014
EXAMPLE
Triangle begins
1,
2, 0;
6, 3, 0;
24, 36, 4, 0;
120, 360, 140, 5, 0;
720, 3600, 3000, 450, 6, 0;
5040, 37800, 54600, 18900, 1302, 7, 0;
MAPLE
T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Nov 13 2013
MATHEMATICA
Table[Table[n!/k! StirlingS2[n-1, n-k], {k, 1, n}], {n, 0, 10}]//Grid (* Geoffrey Critzer, Dec 01 2012 *)
PROG
(PARI)
A055302(n, k)=n!/k!*stirling(n-1, n-k, 2);
for(n=1, 10, for(k=1, n, print1(A055302(n, k), ", ")); print());
\\ Joerg Arndt, Oct 27 2014
CROSSREFS
KEYWORD
AUTHOR
Christian G. Bower, May 11 2000
STATUS
approved