login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127671 Cumulant expansion numbers: Coefficients in expansion of log(1+sum(x[k]*(t^k)/k!,k=1..infinity)). 6
1, 1, -1, 1, -3, 2, 1, -4, -3, 12, -6, 1, -5, -10, 20, 30, -60, 24, 1, -6, -15, -10, 30, 120, 30, -120, -270, 360, -120, 1, -7, -21, -35, 42, 210, 140, 210, -210, -1260, -630, 840, 2520, -2520, 720, 1, -8, -28, -56, -35, 56, 336, 560, 420, 560, -336, -2520, -1680, -5040, -630, 1680, 13440, 10080, -6720 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Connected objects from general (disconnected) objects.

The row lengths of this array is p(n):=A000041(n) (partition numbers).

In row nr. n the partitions of n are taken in the Abramowitz-Stegun order.

One could call the unsigned numbers |a(n,k)| M_5 (similar to M_0, M_1, M_2, M_3 and M_4 given in A111786, A036038, A036039, A036040 and A117506, resp.).

The inverse relation (disconnected from connected objects) is found in A036040.

(d/da(1))p_n[a(1),a(2),...,a(n)] = n b_(n-1)[a(1),a(2),...,a(n-1)], where p_n are the partition polynomials of the cumulant generator A127671 and b_n are the partition polynomials for A133314. - Tom Copeland, Oct 13 2012

REFERENCES

C. Itzykson and J.-M. Drouffe, Statistical field theory, vol.2, p. 413, eq.(13), Cambridge University Press, (1989).

LINKS

Table of n, a(n) for n=1..63.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.

Wolfdieter Lang, First 10 rows of cumulant numbers and polynomials.

FORMULA

E.g.f. for multivariate row polynomials A(t):=log(1+sum(x[k]*(t^k)/k!,k=1..infinity)).

Row n polynomial p_n(x[1],...,x[n])=[(t^n)/n! ]A(t).

a(n,m)=((-1)^(m-1))*(m-1)!*M_3(n,m) with M_3(n,m):=A036040(n,m) (Abramowitz-Stegun M_3 numbers).

EXAMPLE

Row n=3: [1,-3,2] stands for the polynomial 1*x[3] -3*x[1]*x[2] +2*x[1]^3 (the Abramowitz-Stegun order of the p(3)=3 partitions of n=3 is [3],[1,2],[1^3]).

CROSSREFS

Sequence in context: A190698 A077427 A107641 * A247641 A210797 A222220

Adjacent sequences:  A127668 A127669 A127670 * A127672 A127673 A127674

KEYWORD

sign,easy,tabf

AUTHOR

Wolfdieter Lang, Jan 23 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 10:44 EDT 2015. Contains 261120 sequences.