

A263916


Coefficients of the Faber partition polynomials.


26



1, 2, 1, 3, 3, 1, 4, 4, 2, 4, 1, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 6, 3, 12, 6, 2, 9, 6, 1, 7, 7, 7, 7, 7, 14, 7, 7, 7, 21, 7, 7, 14, 7, 1, 8, 8, 8, 8, 8, 16, 8, 4, 16, 8, 24, 8, 8, 12, 24, 32, 8, 2, 16, 20, 8, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The coefficients of the Faber polynomials F(n,b(1),b(2),...,b(n)) (Bouali, p. 52) in the order of the partitions of Abramowitz and Stegun. Compare with A115131 and A210258.
These polynomials occur in discussions of the Virasoro algebra, univalent function spaces and the Schwarzian derivative, symmetric functions, and free probability theory. They are intimately related to symmetric functions, free probability, and Appell sequences through the raising operator R = x  d log(H(D))/dD for the Appell sequence inverse pair associated to the e.g.f.s H(t)e^(xt) (cf. A094587) and (1/H(t))e^(xt) with H(0)=1.
Instances of the Faber polynomials occur in discussions of modular invariants and modular functions in the papers by Asai, Kaneko, and Ninomiya, by Ono and Rolen, and by Zagier.  Tom Copeland, Aug 13 2019
The Faber polynomials, denoted by s_n(a(t)) where a(t) is a formal power series defined by a product formula, are implicitly defined by equation 13.4 on p. 62 of Hazewinkel so as to extract the power sums of the reciprocals of the zeros of a(t). This is the Newton identity expressing the power sum symmetric polynomials in terms of the elementary symmetric polynomials/functions.  Tom Copeland, Jun 06 2020


REFERENCES

H. Airault, "Symmetric sums associated to the factorization of Grunsky coefficients," in Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes: Vol. 47, edited by J. Harnad and P. Winternitz, American Mathematical Society, 2009.
M. Hazewinkel, Formal Groups and Applications, Academic Press, New York San Francisco London, 1978, p. 120.
F. Hirzebruch, Topological methods in algebraic geometry. Second, corrected printing of the third edition. Die Grundlehren der Mathematischen Wissenschaften, Band 131 SpringerVerlag, Berlin Heidelberg New York, 1978, p. 11 and 92.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..5762
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3, no. 9, 2008, pages 449456.
H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bulletin des Sciences Mathématiques, Volume 130, Issue 3, AprilMay 2006, pages 179222.
H. Airault and Y. Neretin, On the action of the Virasoro algebra on the space of univalent functions, arXiv:0704.2149 [math.RT], 2007.
F. Ardila, Algebraic and geometric methods in enumerative combinatorics, arXiv:1409.2562 [math.CO], 2015.
T. Asai, M. Kaneko, and H. Ninomiya, Zeros of certain modular functions and an application, 1997.
A. Bouali, Faber polynomials CayleyHamilton equation and Newton symmetric functions, Bulletin des Sciences Mathématiques, Volume 130, Issue 1, JanFeb 2006, pages 4970.
P. Cartier, Mathemagics: A tribute to L. Euler and R. Feynman, Séminaire Lotharingien de Combinatoire 44 (2000), Article B44d, 2000, p. 53.
P. Cartier, A primer of Hopf algebras, preprint, Institut des Hautes Etudes Scientifiques, France, 2006, pp. 56 and 57.
V. Chan, Topological Ktheory of complex projective spaces, senior's thesis UC Davis (p. 11 on Chern characters of complex vector bundles), 2013.
GiSang Cheon, Hana Kim, Louis W. Shapiro, An algebraic structure for Faber polynomials, Lin. Alg. Applic. 433 (2010) 11701179.
T. Copeland, Lagrange a la Lah, 2011.
T. Copeland, Cycling through the Zeta Garden: Zeta functions for graphs, cycle index polynomials, and determinants, MathOverflow question, 2012.
T. Copeland, Addendum to Elliptic Lie Triad, 2015.
T. Copeland, Connection between the Chebyshev polynomials and the Faber polynomials, MathOverflow question, 2015.
T. Copeland, The Faber Appells, 2020.
T. Copeland, Appells and Roses: Newton, Leibniz, Euler, Riemann and Symmetric Polynomials, 2020.
A. Dress and C. Siebeneicher, The Burnside ring of the infinite cyclic group and its relations to the necklace algebra, lambdarings, and the universal ring of Witt vectors, Adv. in Math., Vol. 78, Issue 1, Nov. 1989, pages 141.
D. Dugger, A Geometric Introduction to KTheory, p. 288 (called Newton polynomials).
M. Eiermann and R. Varga, Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains, Elect. Trans. on Numer. Analysis, Vol. 1, p. 4971, 1993.
H. Figueroa and J. GraciaBondia, Combinatorial Hopf algebras in quantum field theory I, arXiv:0408145 [hepth], 2005, (normalized versions on pp. 42 and 78, denoted as Schur polynomials).
R. Friedrich and J. McKay, Formal groups, Witt vectors and free probability, arXiv:1204.6522 [math.OA], 2012.
A. Hatcher, Vector Bundles and KTheory, Version 2.2, 2017, p. 63.
M. Hazewinkel, Three lectures on formal group laws, Canadian Mathematical Society Conference Proceedings, Vol. 5, p. 5167, 1986.
Y. He, The CalabiYau Landscape: from Geometry, to Physics, to MachineLearning, arXiv:1812.02893 [hepth], 2018, p. 146.
B. Konopelchenko, Quantum deformations of associative algebras and integrable systems, arXiv:0802.3022 [nlin.SI], 2008.
MathOverflow, Canonical reference for Chern characteristic classes, a question posed by Tom Copeland, 2019.
J. McKay and A. Sebbar, On replicable functions: an introduction, Frontiers in Number Theory, Physics, and Geometry II, pp. 373386.
K. Ono and L. Rolen, On Witten's extremal partition functions , arXiv:1807.00444 [math.NT], 2019.
T. Takebe, LeePeng Teo, A. Zabrodin, Löwner equations and dispersionless hierarchies, arXiv:math/0605161 [math.CV], p. 24, 2006.
LeePeng Teo, Analytic functions and integrable hierarchiescharacterization of tau functions, Letters in Mathematical Physics, Vol. 64, Issue 1, Apr 2003, pp. 7592 (also arXiv:hepth/0305005, 2003).
Wikipedia, Newton identities.
D. Zagier, Traces of singular moduli, 2011.


FORMULA

log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n.
d(1 + b(1) x + b(2) x^2 + ...)/dx / (1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) x^(n1).
F(n,b(1),..,b(n)) = n*b(n)  Sum_{k=1..n1} b(nk)*F(k,b(1),..,b(k)).
Umbrally, with B(x) = 1 + b(1) x + b(2) x^2 + ..., B(x) = exp[log(1F.x)] and 1/B(x) = exp[log(1F.x)], establishing a connection to the e.g.f. of A036039 and the symmetric polynomials.
The Stirling partition polynomials of the first kind St1(n,b1,b2,...,bn;1) = IF(n,b1,b2,...,bn) (cf. the Copeland link Lagrange a la Lah, signed A036039, and p. 184 of Airault and Bouali), i.e., the cyclic partition polynomials for the symmetric groups, and the Faber polynomials form an inverse pair for isolating the indeterminates in their definition, for example, F(3,IF(1,b1),IF(2,b1,b2)/2!,IF(3,b1,b2,b3)/3!)= b3, with bk = b(k), and IF(3,F(1,b1),F(2,b1,b2),F(3,b1,b2,b3))/3!= b3.
The polynomials specialize to F(n,t,t,...) = (1t)^n  1.
See Newton Identities on Wikipedia on relation between the power sum symmetric polynomials and the complete homogeneous and elementary symmetric polynomials for an expression in multinomials for the coefficients of the Faber polynomials.
(n1)! F(n,x[1],x[2]/2!,...,x[n]/n!) =  p_n(x[1],...,x[n]), where p_n are the cumulants of A127671 expressed in terms of the moments x[n].  Tom Copeland, Nov 17 2015
(n1)! F(n,B(1,x[1]),B(2,x[1],x[2])/2!,...,B(n,x[1],...,x[n])/n!) = x[n] provides an extraction of the indeterminates of the complete Bell partition polynomials B(n,x[1],...,x[n]) of A036040. Conversely, IF(n,x[1],x[2],x[3]/2!,...,x[n]/(n1)!) = B(n,x[1],...,x[n]).  Tom Copeland, Nov 29 2015
For a square matrix M, determinant(I  x M) = exp[Sum_{k>0} (trace(M^k) x^k / k)] = Sum_{n>0} [ P_n(trace(M),trace(M^2),...,trace(M^n)) x^n/n! ] = 1 + Sum_{n>0} (d[n] x^n), where P_n(x[1],...,x[n]) are the cycle index partition polynomials of A036039 and d[n] = P_n(trace(M),trace(M^2),...,trace(M^n)) / n!. Umbrally, det(I  x M)= exp[log(1  b. x)] = exp[P.(b_1,..,b_n)x] = 1 / (1d.x), where b_k = tr(M^k). Then F(n,d[1],...,d[n]) = tr[M^n].  Tom Copeland, Dec 04 2015
Given f(x) = log(g(x)) = log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n, action on u_n = F(n,b(1),...,b(n)) with A133932 gives the compositional inverse finv(x) of f(x), with F(1,b(1)) not equal to zero, and f(g(finv(x))) = f(e^(x)). Note also that exp(f(x)) = 1 / g(x) = exp[Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n] implies relations among A036040, A133314, A036039, and the Faber polynomials.  Tom Copeland, Dec 16 2015
The Dress and Siebeneicher paper gives combinatorial interpretations and various relations that the Faber polynomials must satisfy for integral values of its arguments. E.g., Eqn. (1.2) p. 2 implies [2 * F(1,1) + F(2,1,b2) + F(4,1,b2,b3,b4)] mod(4) = 0. This equation implies that [F(n,b1,b2,...,bn)(b1)^n] mod(n) = 0 for n prime.  Tom Copeland, Feb 01 2016
With the elementary Schur polynomials S(n,a_1,a_2,...,a_n) = Lah(n,a_1,a_2,...,a_n) / n!, where Lah(n,...) are the refined Lah polynomials of A130561, F(n,S(1,a_1),S(2,a_1,a_2),...,S(n,a_1,...,a_n)) = n * a_n since sum_{n > 0} a_n x^n = log[sum{n >= 0} S(n,a_1,...,a_n) x^n]. Conversely, S(n,F(1,a_1),F(2,a_1,a_2)/2,...,F(n,a_1,...,a_n)/n) = a_n.  Tom Copeland, Sep 07 2016
See Corollary 3.1.3 on p. 38 of Ardila and Copeland's two MathOverflow links to relate the Faber polynomials, with arguments being the signed elementary symmetric polynomials, to the logarithm of determinants, traces of powers of an adjacency matrix, and number of walks on graphs.  Tom Copeland, Jan 02 2017
The umbral inverse polynomials IF appear on p. 19 of Konopelchenko as partial differential operators.  Tom Copeland, Nov 19 2018


EXAMPLE

F(1,b1) =  b1
F(2,b1,b2) = 2 b2 + b1^2
F(3,b1,b2,b3) = 3 b3 + 3 b1 b2  b1^3
F(4,b1,...) = 4 b4 + 4 b1 b3 + 2 b2^2  4 b1^2 b2 + b1^4
F(5,...) = 5 b5 + 5 b1 b4 + 5 b2 b3  5 b1^2 b3  5 b1 b2^2 + 5 b1^3 b2  b1^5

IF(1,b1) = b1
IF(2,b1,,b2) = b2 + b1^2
IF(3,b1,b2,b3) = 2 b3 + 3 b1 b2  b1^3
IF(4,b1,...) = 6 b4 + 8 b1 b3 + 3 b2^2  6 b1^2 b2 + b1^4
IF(5,...) = 24 b5 + 30 b1 b4 + 20 b2 b3  20 b1^2 b3  15 b1 b2^2 + 10 b1^3 b2  b1^5

For 1/(1+x)^2 = 1 2x + 3x^2  4x^3 + 5x^4  ..., F(n,2,3,4,...) = (1)^(n+1) 2.

F(n,x,2x,...,nx), F(n,x,2x,3x,...,(1)^n n*x), and F(n,(2x),1,0,0,...) are related to the Chebyshev polynomials through A127677 and A111125. See also A110162, A156308, A208513, A217476, and A220668.

For b1 = p, b2 = q, and all other indeterminates 0, see A113279 and A034807.
For b1 = y, b2 = 1 and all other indeterminates 0, see A127672.


MATHEMATICA

F[0] = 1; F[1] = b[1]; F[2] = b[1]^2  2 b[2]; F[n_] := F[n] = b[1] F[n  1]  Sum[b[n  k] F[k], {k, 1, n  2}]  n b[n] // Expand;
row[n_] := (List @@ F[n]) /. b[_] > 1 // Reverse;
Table[row[n], {n, 1, 8}] // Flatten // Rest (* JeanFrançois Alcover, Jun 12 2017 *)


CROSSREFS

Cf. A034807, A036039, A036040, A094587, A110162, A111125, A113279, A115131.
Cf. A127671, A127672, A127677, A130561, A133314, A156308, A208513, A210258.
Cf. A217476, A220668.
Sequence in context: A307449 A207645 A115131 * A210258 A181108 A211782
Adjacent sequences: A263913 A263914 A263915 * A263917 A263918 A263919


KEYWORD

sign,tabf,easy


AUTHOR

Tom Copeland, Oct 29 2015


EXTENSIONS

More terms from JeanFrançois Alcover, Jun 12 2017


STATUS

approved



