login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113279
Triangle T(n,k) of coefficients of r_1^n+r_2^n in terms of p and q, where r_1,r_2 are the roots of x^2+px+q=0.
3
2, -1, 1, -2, -1, 3, 1, -4, 2, -1, 5, -5, 1, -6, 9, -2, -1, 7, -14, 7, 1, -8, 20, -16, 2, -1, 9, -27, 30, -9, 1, -10, 35, -50, 25, -2, -1, 11, -44, 77, -55, 11, 1, -12, 54, -112, 105, -36, 2, -1, 13, -65, 156, -182, 91, -13, 1, -14, 77, -210, 294, -196, 49, -2, -1, 15, -90, 275, -450, 378, -140, 15
OFFSET
0,1
COMMENTS
The triangle begins: 2 .-1 1..-2 .-1..3 1..-4.2
From Tom Copeland, Nov 07 2015: (Start)
The row polynomials are the power sums p_n = x1^n + x2^n of the solutions of 0 = (x-x1)(x-x2) = x^2 - (x1+x2) x + x1x2 = x^2 + px + q, so -p = x1+x2 = e1(x1,x2), the first order elementary symmetric polynomial for two variables, or indeterminates, and q = x1*x2 = e2(x1,x2), the second order elementary symmetric polynomial.
The Girard-Newton-Waring identities (Wikipedia) express the power sums in terms of the elementary symmetric polynomials, giving
p_0 = x1^0 + x0^0 = 2
p_1 = x1 + x2 = e1 = -p = F(1,p,q,0,..)
p_2 = x1^2 + x2^2 = e1^2 - 2 e2 = p^2 - 2 q = F(2,p,q,0,..)
p_3 = e1^3 - 3 e2 e1 = -p^3 + 3 pq = F(3,p,q,0,..)
p_4 = p^4 - 4 p^2 q + 2 q^2 = F(4,p,q,0,..)
... .
These bivariate partition polynomials are the Faber polynomials F(n,b1,b2,..,bn) of A263916 with b1 = -e1 = p, b2 = e2 = q, and all other indeterminates set to zero.
Let p = q = t, then
F(1,t,t,0,..)/t = -1
F(2,t,t,0,..)/t = -2 + t
F(3,t,t,0,..)/t^2 = 3 - t
F(4,t,t,0,..)/t^2 = 2 - 4 t + t^2
... .
Or,
t * F(1,1/t,1/t,0,..) = -1
t^2 * F(2,1/t,1/t,0,..) = 1 -2 t
t^3 * F(3,1/t,1/t,0,..) = -1 + 3 t
t^4 * F(4,1/t,1/t,0,..) = 1 - 4 t + 2 t^2
... .
The sequence of Faber polynomials F(n,1/t,1/t,0,..) is obtained from the logarithmic generator -log[1+(x+x^2)/t] = sum{n>=1, F(n,1/t,1/t,0,..) x^n/n}, so
2-(2xt+1)xt/(t+xt+(xt)^2) = 2 + sum{n>=1, t^n F(n,1//t,1/t,0,..) x^n} is an o.g.f. for the row polynomials of this entry.
(End)
REFERENCES
M. Herkenhoff Konersmann, Sprokkel XXXI: x_1^n+x_2^n, Nieuw Tijdschr. Wisk, 42 (1954-55) 180.
FORMULA
T(n, k) = (-1)^(n+k)*A034807(n, k).
O.g.f.: 2-(2xt+1)xt/(t+xt+(xt)^2) = (2+x)/(1+x+x^2/t). - Tom Copeland, Nov 07 2015
EXAMPLE
x_1^5+x_2^5 = -p^5 + 5p^3q - 5pq^2, so row 5 reads -1, 5, -5.
CROSSREFS
Sequence in context: A055893 A050221 A213235 * A213234 A034807 A275111
KEYWORD
easy,sign,tabf
AUTHOR
Floor van Lamoen, Oct 22 2005
STATUS
approved