login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113278
Triangle T, read by rows, such that the matrix square, T^2, forms a simple 2-diagonal triangle where [T^2](n,n) = 1 and [T^2](n+1,n) = 2*(n+1) for n>=0.
4
1, 1, 1, -1, 2, 1, 3, -3, 3, 1, -15, 12, -6, 4, 1, 105, -75, 30, -10, 5, 1, -945, 630, -225, 60, -15, 6, 1, 10395, -6615, 2205, -525, 105, -21, 7, 1, -135135, 83160, -26460, 5880, -1050, 168, -28, 8, 1, 2027025, -1216215, 374220, -79380, 13230, -1890, 252, -36, 9, 1
OFFSET
0,5
FORMULA
Exponential Riordan array [sqrt(1 + 2*x),x] with e.g.f. sqrt(1+2*x)*exp(t*x) = 1 + (1+t)*x + (-1+2*t+t^2)*x^2/2! + ... . The n-th row polynomial R(n,x) is given by the type B Dobinski formula R(n,x) = exp(-x/2)*sum {k = 0..inf} (2*k+1)*(2*k-1)*...*(2*k+1-2*(n-1))*(x/2)^k/k!. Cf. A122848. - Peter Bala, Jun 23 2014
EXAMPLE
Triangle begins:
1;
1,1;
-1,2,1;
3,-3,3,1;
-15,12,-6,4,1;
105,-75,30,-10,5,1;
-945,630,-225,60,-15,6,1;
10395,-6615,2205,-525,105,-21,7,1;
...
where T(n,k) = (-1)^(n-1-k)*A001147(n-1)*C(n,k).
The matrix square equals:
1;
2,1;
0,4,1;
0,0,6,1;
0,0,0,8,1;
0,0,0,0,10,1;
0,0,0,0,0,12,1;
...
The matrix log, L, begins:
0;
1,0;
-2,2,0;
8,-6,3,0;
-48,32,-12,4,0;
384,-240,80,-20,5,0;
-3840,2304,-720,160,-30,6,0;
...
where L(n,k) = (-1)^(n-1-k)*A000165(n-1)*C(n,k).
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Sqrt[1 + 2 #]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r==c, 1, if(r==c+1, 2*c)))); (sum(i=0, n+1, (sum(j=1, n+1, -(M^0-M)^j/j)/2)^i/i!))[n+1, k+1]}
CROSSREFS
Cf. A001147 (odd double factorials), A000165 (even double factorials).
Sequence in context: A152534 A136018 A138022 * A132382 A366627 A325495
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Oct 22 2005
STATUS
approved