Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 29 2022 09:41:13
%S 1,1,1,-1,2,1,3,-3,3,1,-15,12,-6,4,1,105,-75,30,-10,5,1,-945,630,-225,
%T 60,-15,6,1,10395,-6615,2205,-525,105,-21,7,1,-135135,83160,-26460,
%U 5880,-1050,168,-28,8,1,2027025,-1216215,374220,-79380,13230,-1890,252,-36,9,1
%N Triangle T, read by rows, such that the matrix square, T^2, forms a simple 2-diagonal triangle where [T^2](n,n) = 1 and [T^2](n+1,n) = 2*(n+1) for n>=0.
%H Peter Bala, <a href="/A035342/a035342_Bala.txt">Generalized Dobinski formulas</a>
%F Exponential Riordan array [sqrt(1 + 2*x),x] with e.g.f. sqrt(1+2*x)*exp(t*x) = 1 + (1+t)*x + (-1+2*t+t^2)*x^2/2! + ... . The n-th row polynomial R(n,x) is given by the type B Dobinski formula R(n,x) = exp(-x/2)*sum {k = 0..inf} (2*k+1)*(2*k-1)*...*(2*k+1-2*(n-1))*(x/2)^k/k!. Cf. A122848. - _Peter Bala_, Jun 23 2014
%e Triangle begins:
%e 1;
%e 1,1;
%e -1,2,1;
%e 3,-3,3,1;
%e -15,12,-6,4,1;
%e 105,-75,30,-10,5,1;
%e -945,630,-225,60,-15,6,1;
%e 10395,-6615,2205,-525,105,-21,7,1;
%e ...
%e where T(n,k) = (-1)^(n-1-k)*A001147(n-1)*C(n,k).
%e The matrix square equals:
%e 1;
%e 2,1;
%e 0,4,1;
%e 0,0,6,1;
%e 0,0,0,8,1;
%e 0,0,0,0,10,1;
%e 0,0,0,0,0,12,1;
%e ...
%e The matrix log, L, begins:
%e 0;
%e 1,0;
%e -2,2,0;
%e 8,-6,3,0;
%e -48,32,-12,4,0;
%e 384,-240,80,-20,5,0;
%e -3840,2304,-720,160,-30,6,0;
%e ...
%e where L(n,k) = (-1)^(n-1-k)*A000165(n-1)*C(n,k).
%t (* The function RiordanArray is defined in A256893. *)
%t RiordanArray[Sqrt[1 + 2 #]&, #&, 10, True] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *)
%o (PARI) {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r==c,1,if(r==c+1,2*c)))); (sum(i=0,n+1,(sum(j=1,n+1,-(M^0-M)^j/j)/2)^i/i!))[n+1,k+1]}
%Y Cf. A039683, A122848.
%Y Cf. A001147 (odd double factorials), A000165 (even double factorials).
%K sign,tabl
%O 0,5
%A _Paul D. Hanna_, Oct 22 2005