login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) of coefficients of r_1^n+r_2^n in terms of p and q, where r_1,r_2 are the roots of x^2+px+q=0.
3

%I #20 Jan 14 2016 05:08:58

%S 2,-1,1,-2,-1,3,1,-4,2,-1,5,-5,1,-6,9,-2,-1,7,-14,7,1,-8,20,-16,2,-1,

%T 9,-27,30,-9,1,-10,35,-50,25,-2,-1,11,-44,77,-55,11,1,-12,54,-112,105,

%U -36,2,-1,13,-65,156,-182,91,-13,1,-14,77,-210,294,-196,49,-2,-1,15,-90,275,-450,378,-140,15

%N Triangle T(n,k) of coefficients of r_1^n+r_2^n in terms of p and q, where r_1,r_2 are the roots of x^2+px+q=0.

%C The triangle begins: 2 .-1 1..-2 .-1..3 1..-4.2

%C From _Tom Copeland_, Nov 07 2015: (Start)

%C The row polynomials are the power sums p_n = x1^n + x2^n of the solutions of 0 = (x-x1)(x-x2) = x^2 - (x1+x2) x + x1x2 = x^2 + px + q, so -p = x1+x2 = e1(x1,x2), the first order elementary symmetric polynomial for two variables, or indeterminates, and q = x1*x2 = e2(x1,x2), the second order elementary symmetric polynomial.

%C The Girard-Newton-Waring identities (Wikipedia) express the power sums in terms of the elementary symmetric polynomials, giving

%C p_0 = x1^0 + x0^0 = 2

%C p_1 = x1 + x2 = e1 = -p = F(1,p,q,0,..)

%C p_2 = x1^2 + x2^2 = e1^2 - 2 e2 = p^2 - 2 q = F(2,p,q,0,..)

%C p_3 = e1^3 - 3 e2 e1 = -p^3 + 3 pq = F(3,p,q,0,..)

%C p_4 = p^4 - 4 p^2 q + 2 q^2 = F(4,p,q,0,..)

%C ... .

%C These bivariate partition polynomials are the Faber polynomials F(n,b1,b2,..,bn) of A263916 with b1 = -e1 = p, b2 = e2 = q, and all other indeterminates set to zero.

%C Let p = q = t, then

%C F(1,t,t,0,..)/t = -1

%C F(2,t,t,0,..)/t = -2 + t

%C F(3,t,t,0,..)/t^2 = 3 - t

%C F(4,t,t,0,..)/t^2 = 2 - 4 t + t^2

%C ... .

%C Or,

%C t * F(1,1/t,1/t,0,..) = -1

%C t^2 * F(2,1/t,1/t,0,..) = 1 -2 t

%C t^3 * F(3,1/t,1/t,0,..) = -1 + 3 t

%C t^4 * F(4,1/t,1/t,0,..) = 1 - 4 t + 2 t^2

%C ... .

%C The sequence of Faber polynomials F(n,1/t,1/t,0,..) is obtained from the logarithmic generator -log[1+(x+x^2)/t] = sum{n>=1, F(n,1/t,1/t,0,..) x^n/n}, so

%C 2-(2xt+1)xt/(t+xt+(xt)^2) = 2 + sum{n>=1, t^n F(n,1//t,1/t,0,..) x^n} is an o.g.f. for the row polynomials of this entry.

%C (End)

%D M. Herkenhoff Konersmann, Sprokkel XXXI: x_1^n+x_2^n, Nieuw Tijdschr. Wisk, 42 (1954-55) 180.

%H T. Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/the-elliptic-lie-triad-kdv-and-ricattt-equations-infinigens-and-elliptic-genera/">Addendum to Elliptic Lie Triad</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Newton%27s_identities">Newton's identities</a>.

%F T(n, k) = (-1)^(n+k)*A034807(n, k).

%F O.g.f.: 2-(2xt+1)xt/(t+xt+(xt)^2) = (2+x)/(1+x+x^2/t). - _Tom Copeland_, Nov 07 2015

%e x_1^5+x_2^5 = -p^5 + 5p^3q - 5pq^2, so row 5 reads -1, 5, -5.

%Y Cf. A034807, A263916.

%K easy,sign,tabf

%O 0,1

%A _Floor van Lamoen_, Oct 22 2005