login
A127669
Number of numbers mapped to A127668(n) with the map described there.
2
1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 3, 2, 7, 2, 2, 2, 5, 1, 2, 2, 5, 1, 3, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 3, 3, 11, 2, 3, 1, 3, 2, 3, 1, 7, 2, 2, 3, 3, 2, 3, 2, 7, 5, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 3, 2, 2, 2, 11, 1, 3, 3, 5
OFFSET
2,3
COMMENTS
This is not A008481(n), n>=2, which starts similarly, but differs, beginning with n=24.
LINKS
FORMULA
a(n) <= pa(Length( A127668(n))), n>=2. Length gives the number of digits and pa(k):=A000041(k) (partition numbers). (It was originally claimed that this is equality, but that is not correct. - Franklin T. Adams-Watters, May 21 2014)
EXAMPLE
a(4)=2 because two numbers are mapped to 11= A127668(4), namely n=p(1)*p(1)=4 and n=p(11)=31. p(n)=A000041(n) (partition numbers).
a(24)=5 but A008481(24)=4.
The five numbers mapped to A127668(24)= 2111 are: 18433, 2594, 2263, 292, 24.
MAPLE
f:= proc(n) local S;
nops(g(sprintf("%d", n)))
end proc:
g:= proc(s) option remember;
local S, m, k1;
if s[1] = "0" then return {} fi;
S:= {[parse(s)]};
for m from 1 to length(s)-1 do
k1:= parse(s[1..m]);
S:= S union map(t -> [k1, op(t)], select(r -> r[1] <= k1, procname(s[m+1..-1])));
od;
S;
end proc:
h:= proc(n) local F;
F:= map(t -> numtheory:-pi(t[1])$t[2], sort(ifactors(n)[2], (a, b) -> a[1] > b[1]));
parse(cat(op(F)))
end proc:
seq(f(h(i)), i=2..100); # Robert Israel, Dec 08 2024
CROSSREFS
Sequence in context: A329617 A008481 A318473 * A323436 A056692 A331600
KEYWORD
nonn,easy,base
AUTHOR
Wolfdieter Lang Jan 23 2007
EXTENSIONS
Edited by Franklin T. Adams-Watters, May 21 2014
Corrected by Robert Israel, Dec 08 2024
STATUS
approved