login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379113
a(1) = 1; for n > 1, a(n) is the greatest proper unitary divisor d of n such that A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
0
1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 3, 1, 1, 1, 1, 5, 7, 11, 1, 3, 1, 2, 1, 7, 1, 15, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 2, 3, 13, 1, 1, 11, 7, 3, 2, 1, 15, 1, 31, 7, 1, 5, 33, 1, 1, 3, 35, 1, 9, 1, 1, 3, 19, 7, 6, 1, 5, 1, 1, 1, 21, 1, 43, 3, 11, 1, 1, 7, 23, 31, 47, 1, 3, 1, 1, 1, 4, 1
OFFSET
1,6
FORMULA
a(n) = n/A379119(n).
PROG
(PARI)
A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
A065621(n) = bitxor(n-1, n+n-1);
A379113(n) = if(1==n, n, my(s=sigma(n)); fordiv(n, d, if((d>1) && 1==gcd(d, n/d) && A048720(A065621(sigma(n/d)), sigma(d))==s, return(n/d))));
CROSSREFS
Cf. A000203, A048720, A065621, A379114 (positions of terms > 1), A379119.
Cf. also A325567.
Sequence in context: A340084 A317939 A086767 * A119288 A226040 A302034
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, Dec 17 2024
STATUS
approved