login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; for n > 1, a(n) is the greatest proper unitary divisor d of n such that A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).
0

%I #10 Dec 17 2024 18:30:23

%S 1,1,1,1,1,3,1,1,1,5,1,3,1,7,3,1,1,1,1,5,7,11,1,3,1,2,1,7,1,15,1,1,3,

%T 1,7,1,1,1,3,5,1,21,1,11,1,23,1,3,1,2,3,13,1,1,11,7,3,2,1,15,1,31,7,1,

%U 5,33,1,1,3,35,1,9,1,1,3,19,7,6,1,5,1,1,1,21,1,43,3,11,1,1,7,23,31,47,1,3,1,1,1,4,1

%N a(1) = 1; for n > 1, a(n) is the greatest proper unitary divisor d of n such that A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).

%H Antti Karttunen, <a href="/A379113/b379113.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a>.

%H <a href="/index/Ge#GF2X">Index entries for sequences related to polynomials in ring GF(2)[X]</a>.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F a(n) = n/A379119(n).

%o (PARI)

%o A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);

%o A065621(n) = bitxor(n-1,n+n-1);

%o A379113(n) = if(1==n,n,my(s=sigma(n)); fordiv(n,d,if((d>1) && 1==gcd(d,n/d) && A048720(A065621(sigma(n/d)),sigma(d))==s,return(n/d))));

%Y Cf. A000203, A048720, A065621, A379114 (positions of terms > 1), A379119.

%Y Cf. also A325567.

%K nonn,new

%O 1,6

%A _Antti Karttunen_, Dec 17 2024