login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226040
a(n) = product{ p prime such that p divides n + 1 and p - 1 does not divide n }.
4
1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 3, 1, 5, 7, 11, 1, 3, 1, 13, 1, 7, 1, 15, 1, 1, 11, 17, 35, 3, 1, 19, 13, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 5, 17, 13, 1, 3, 55, 7, 19, 29, 1, 15, 1, 31, 7, 1, 13, 33, 1, 17, 23, 35, 1, 3, 1, 37, 5, 19, 77, 39
OFFSET
0,6
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = A225481(n) / A141056(n).
EXAMPLE
a(41) = 21 = 3*7 = product({2,3,7} setminus {2}).
MAPLE
s:= (p, n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0);
A226040 := n -> mul(z, z = select(p->s(p, n), select('isprime', [$2..n])));
seq(A226040(n), n=0..77);
MATHEMATICA
a[n_] := Times @@ Select[ FactorInteger[n+1][[All, 1]], !Divisible[n, #-1] &]; a[0] = 1; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
PROG
(Sage)
def A226040(n):
F = filter(lambda p: ((n+1) % p == 0) and (n % (p-1)), primes(n))
return mul(F)
[A226040(n) for n in (0..77)]
(PARI) a(n)=my(f=factor(n+1)[, 1], s=1); prod(i=1, #f, if(n%(f[i]-1), f[i], 1)) \\ Charles R Greathouse IV, Jun 27 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 26 2013
STATUS
approved