login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355449
a(n) = 1 if n^2 + 2 is prime, 0 otherwise.
2
1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
0
FORMULA
a(n) = A010051(A059100(n)).
MATHEMATICA
a[n_] := If[PrimeQ[n^2 + 2], 1, 0]; Array[a, 100, 0] (* Amiram Eldar, Jul 12 2022 *)
PROG
(PARI) A355449(n) = isprime(2+(n^2));
(Python)
from sympy import isprime
def A355449(n): return int(isprime(n**2+2)) # Chai Wah Wu, Jul 13 2022
CROSSREFS
Characteristic function of A067201.
Cf. also A295405.
Sequence in context: A267537 A329670 A183919 * A058840 A266155 A379111
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 12 2022
STATUS
approved