|
|
A195442
|
|
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1+k*x)^4.
|
|
2
|
|
|
1, 4, 38, 604, 13797, 416168, 15711490, 715565508, 38278167466, 2356801113088, 164391501446500, 12826066272723832, 1107734575497955773, 104985517080964044744, 10838759916371136482170, 1211294776167588947134004, 145737426974188872882131694
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
CONJECTURES. (Start)
_ The self-convolution square-root is A195443 and consists entirely of integers.
_ a(4*(2^n-1)) is odd; odd numbers occur only at positions {2^(n+2) - 4, n>=0}.
_ In the self-convolution square-root of this sequence (A195443), odd numbers occur only at positions {2^(n+1) - 2, n>=0}. (End)
|
|
LINKS
|
|
|
EXAMPLE
|
G.f.: 1 = 1/(1+x)^4 + 4*x/((1+x)^4*(1+2*x)^4) + 38*x^2/((1+x)^4*(1+2*x)^4*(1+3*x)^4) + 604*x^3/((1+x)^4*(1+2*x)^4*(1+3*x)^4*(1+4*x)^4) +...
This sequence has odd terms at [0,4,12,28,60,124,...,2^(n+2)-4,...].
O.g.f.: A(x) = 1 + 4*x + 38*x^2 + 604*x^3 + 13797*x^4 + 416168*x^5 +...
where the square-root is an integer series (cf. A195443):
A(x)^(1/2) = 1 + 2*x + 17*x^2 + 268*x^3 + 6218*x^4 + 191092*x^5 + 7331943*x^6 + 338203880*x^7 + 18267488524*x^8 + 1132962942756*x^9 +...
which has odd terms at [0,2,6,14,30,62,126,...,2^(n+1)-2,...].
|
|
MATHEMATICA
|
a[n_] := a[n] = If[n == 0, 1, SeriesCoefficient[1-Sum[a[k] x^k/Product[1 + j x + x O[x]^n, {j, 1, k+1}]^4, {k, 0, n-1}], {x, 0, n}]];
|
|
PROG
|
(PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j*x+x*O(x^n))^4), n))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|