login
A118804
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1+k*x)^2.
7
1, 2, 9, 66, 685, 9294, 156697, 3169910, 74998081, 2035262154, 62391632417, 2134187066010, 80641239109677, 3337651407273846, 150239268816661137, 7310140430519234862, 382439924662714479457, 21413128578896024921298, 1277905479699750127195097
OFFSET
0,2
COMMENTS
Compare to: 1 = Sum_{n>=0} n!*x^n / Product_{k=1..n+1} (1+k*x).
LINKS
EXAMPLE
1 = 1/(1+x)^2 + 2*x/((1+x)*(1+2*x))^2 + 9*x^2/((1+x)*(1+2*x)*(1+3*x))^2 + 66*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x))^2 +...+ a(n)*x^n/((1+x)*(1+2x)*(1+3x)*...*(1+n*x))^2 +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j*x+x*O(x^n))^2), n))}
CROSSREFS
Cf. A118805 (variant).
Sequence in context: A089471 A196193 A331817 * A365995 A020555 A243281
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 02 2006
STATUS
approved