login
A138214
G.f.: A(x) = 1 + x*(1 + x*(1 + x*(...(1 + x*(...)^(4n))...)^12)^8)^4.
6
1, 1, 4, 38, 596, 13137, 373544, 13008184, 535947320, 25492727304, 1374588760980, 82844371459764, 5518323917106220, 402556752045926108, 31916585459440839392, 2732642735337686840152, 251267557458318511262096
OFFSET
0,3
EXAMPLE
G.f.: A(x)=1+x*B(x)^4, B(x)=1+x*C(x)^8, C(x)=1+x*D(x)^12, D(x)=1+x*E(x)^16,...
where A(x),B(x),C(x),... are the g.f. of the sequences given below.
A=[1,1,4,38,596,13137,373544,13008184,535947320,25492727304,...];
B=[1,1,8,124,2792,81462,2902528,121830916,5880235184,...];
C=[1,1,12,258,7612,278991,12084552,600710380,33615167976,...];
D=[1,1,16,440,16080,711740,36459968,2105685752,134824193120,...];
E=[1,1,20,670,29220,1517725,89938984,5933795760,429195194520,...];
F=[1,1,24,948,48056,2866962,193128768,14351122716,1159330814736,...]; ...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(j=0, n-1, A=1+x*A^(4*(n-j))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 06 2008
STATUS
approved