login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364816
Number of labeled forests of rooted Greg hypertrees with n white vertices.
4
1, 4, 38, 587, 12607, 347158, 11668113, 463118041, 21199488803, 1099465138203, 63715991036964, 4080500855334901, 286178278238641752, 21813909692571410084, 1795659553423061982001, 158754024731440581761116, 15002712207593790179795284, 1509215071938528737864389367, 161017605699030302902310357883
OFFSET
1,2
COMMENTS
A Greg hypertree is a hypertree with black and white vertices, such that black vertices are unlabeled and have at least two incoming edges.
FORMULA
E.g.f: series reversion of (log(1+t)-exp(t)+t+1)*exp(-t).
a(n) ~ sqrt((1+s)*(2+s)/((1+r)*(3 + s*(3+s)))) * n^(n-1) / (exp(n) * r^(n - 1/2)), where s = 0.3900539630495916058133890253422601894372373496844... is the root of the equation exp(-s + 1/(1+s)) = 1+s and r = exp(-s)*(1 + 1/(1+s)) - 1 = 0.1640664235584946357534702598223332293549130374395... - Vaclav Kotesovec, Oct 24 2023
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[E^-x (1 + x + Log[1 + x]) - 1, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Oct 24 2023 *)
PROG
(PARI) my(t='t+O('t^25)); Vec(serlaplace(serreverse((log(1+t)-exp(t)+t+1)*exp(-t)))) \\ Michel Marcus, Oct 21 2023
CROSSREFS
Sequence in context: A113664 A217900 A077745 * A277869 A138214 A195442
KEYWORD
nonn,easy
AUTHOR
Paul Laubie, Oct 21 2023
STATUS
approved