Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 26 2022 12:56:08
%S 231,561,3655,5565,8911,10585,13695,23653,32131,45451,59685,74305,
%T 108345,115921,157641,243253,248865,302253,314821,334153,371091,
%U 392055,417241,458403,505515,546535,688551,702705,795691,821121,915981,932295,1004653,1145341,1181953
%N Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also hexagonal numbers (A000384) with index equal to their largest prime factor.
%C 561, 8911, and 10585 are also Carmichael numbers (A002997).
%C The smallest primary Carmichael number (A324316) in the sequence is 8801128801 = 181 * 733 * 66337 = A000384(66337).
%C See the section on polygonal numbers in Kellner and Sondow 2019.
%C Subsequence of the special polygonal numbers A324973. - _Jonathan Sondow_, Mar 27 2019
%H Amiram Eldar, <a href="/A324319/b324319.txt">Table of n, a(n) for n = 1..10000</a>
%H Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.4169/amer.math.monthly.124.8.695">Power-Sum Denominators</a>, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:<a href="https://arxiv.org/abs/1705.03857">1705.03857</a> [math.NT], 2017.
%H Bernd C. Kellner and Jonathan Sondow, <a href="http://math.colgate.edu/~integers/v52/v52.pdf">On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits</a>, #A52 Integers 21 (2021), 21 pp.; arXiv:<a href="https://arxiv.org/abs/1902.10672">1902.10672</a> [math.NT], 2019.
%e A324315(1) = 231 = 3 * 7 * 11 = 11 * (2 * 11 - 1) = A000384(11), so 231 is a member.
%t SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
%t LP[n_] := Transpose[FactorInteger[n]][[1]];
%t HN[n_] := n(2n - 1);
%t TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
%t Select[HN@ Prime[Range[100]], TestS[#] &]
%Y Cf. A000384, A002997, A195441, A324315, A324316, A324317, A324318, A324320, A324369, A324370, A324371, A324404, A324405, A324973.
%K nonn,base
%O 1,1
%A _Bernd C. Kellner_ and _Jonathan Sondow_, Feb 23 2019
%E More terms from _Amiram Eldar_, Dec 05 2020