login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081007
a(n) = Fibonacci(4n+1) - 1, or Fibonacci(2n)*Lucas(2n+1).
5
0, 4, 33, 232, 1596, 10945, 75024, 514228, 3524577, 24157816, 165580140, 1134903169, 7778742048, 53316291172, 365435296161, 2504730781960, 17167680177564, 117669030460993, 806515533049392, 5527939700884756, 37889062373143905, 259695496911122584
OFFSET
0,2
COMMENTS
Also the index of the first of two consecutive triangular numbers whose sum is equal to the sum of two consecutive heptagonal numbers. - Colin Barker, Dec 20 2014
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(4+x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
a(n) = Sum_{i=1..2n} binomial(2n+i, 2n-i). - Wesley Ivan Hurt, Oct 06 2013
a(n) = Sum_{i=0..2n-1} F(i)*L(i+2), F(i) = A000045(i) and L(i) = A000032(i). - Rigoberto Florez, Apr 19 2019
Product_{n>=1} (1 - 1/a(n)) = (1 + 1/sqrt(5))/2 (A242671). - Amiram Eldar, Nov 28 2024
MAPLE
with(combinat) for n from 0 to 30 do printf(`%d, `, fibonacci(4*n+1)-1) od # James A. Sellers, Mar 03 2003
MATHEMATICA
Table[Fibonacci[4n+1] -1, {n, 0, 30}] (* Wesley Ivan Hurt, Oct 06 2013 *)
LinearRecurrence[{8, -8, 1}, {0, 4, 33}, 30] (* Harvey P. Dale, Jul 31 2018 *)
Table[Fibonacci[2n]LucasL[2n+1], {n, 0, 30}] (* Rigoberto Florez, Apr 19 2019 *)
PROG
(Magma) [Fibonacci(4*n+1) -1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
(Maxima) A081007(n):=fib(4*n+1)-1$
makelist(A081007(n), n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(PARI) concat(0, Vec(x*(4+x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
(PARI) vector(30, n, n--; fibonacci(4*n+1)-1) \\ G. C. Greubel, Jul 14 2019
(Sage) [fibonacci(4*n+1)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> Fibonacci(4*n+1)-1); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A097705 A131509 A221030 * A213168 A203212 A041024
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved