OFFSET
0,2
COMMENTS
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0. For k=3, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, May 18 2015
LINKS
M. F. Hasler, Table of n, a(n) for n = 0..100
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (1 -3x +26x^2 +38x^3 +53x^4 +5x^5)/(1-x)^7. - Emeric Deutsch, Aug 23 2007
MAPLE
p:=proc(n, i) mul( n^j+j, j=1..i)/i!; end; [seq(p(n, 3), n=0..30)];
seq((1/6)*(n+1)*(n^2+2)*(n^3+3), n=0..25); # Emeric Deutsch, Aug 23 2007
MATHEMATICA
Table[x = 3; Product[(n^k) + k, {k, x}]/6, {n, 0, 27}] (* Michael De Vlieger, Apr 24 2015 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 4, 33, 220, 1005, 3456, 9709}, 40] (* Harvey P. Dale, Oct 18 2016 *)
PROG
(Maxima) A131509(n):=(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6$
makelist(A131509(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) vector(20, n, n--; (n+1)*(n^2+2)*(n^3+3)/3!) \\ Derek Orr, Apr 25 2015
(Magma) [(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
(PARI) A131509(n)=(n+1)*(n^2+2)*(n^3+3)/6 \\ M. F. Hasler, May 02 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander R. Povolotsky, Aug 13 2007, Aug 25 2007
EXTENSIONS
Corrected and extended by R. J. Mathar and Emeric Deutsch, Aug 21 2007
STATUS
approved