login
A131685
a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0.
16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869
OFFSET
1,14
COMMENTS
It appears that none of the terms are divisible by 3. - Alexander R. Povolotsky, Oct 18 2007
MAPLE
# Maple program from Cyril Banderier, Sep 18 2007:
List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.
for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:
while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):
d:=d*div; for x from 0 to d-1 do [seq((x &^k mod d)+k mod d, k=1..n)]:contrib[d, x]:=nops(select(has, %, 0)): od:
L:=seq(add(contrib[div^j, x mod div^j], j=1..e), x=0..div^e-1); oldmini:=mini: mini:=min(L): od:
if mini<padic[ordp](n!, div) then m:=m*div^(padic[ordp](n!, div)-mini) fi; od: print(n, m); List:=List, m: od:
[List];
CROSSREFS
Cf. A000027 (for n=1), A064808 (n=2), A131509 (n=3), A129995 (n=4), A131675 (n=5), ..., A131680 (n=10).
See also A049614.
Sequence in context: A195202 A252799 A022619 * A019860 A011422 A051726
KEYWORD
nonn
AUTHOR
Alexander R. Povolotsky and Peter J. C. Moses, Sep 12 2007, revised Sep 17 2007
EXTENSIONS
More terms from Cyril Banderier, Sep 17 2007
STATUS
approved