OFFSET
0,1
LINKS
V. S. Adamchik, Contributions to the Theory of the Barnes function, arXiv:math/0308086 [math.CA], 2003.
Eric Weisstein's World of Mathematics, Barnes G-Function.
Wikipedia, Barnes G-function.
FORMULA
(3^(1/72)*e^(1/9 + (-2*Pi^2 + 3*PolyGamma(1, 1/3))/(36*sqrt(3)*Pi)))/(A^(4/3)*Gamma(2/3)^(1/3)), where PolyGamma(1, .) is the derivative of the digamma function and A the Glaisher-Kinkelin constant (A074962).
G(1/3) * G(2/3) = A252798 * A252799 = 3^(7/36) * exp(2/9) / (A^(8/3) * 2^(1/3) * Pi^(1/3) * Gamma(1/3)^(1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
EXAMPLE
0.7768493857761814773011834392215499808040471363453813...
MATHEMATICA
RealDigits[BarnesG[2/3], 10, 105] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Dec 22 2014
STATUS
approved