login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195202
Unique constant x that satisfies: x = Sum_{n>=1} 1/floor(x^n).
2
1, 7, 7, 6, 7, 9, 1, 4, 2, 5, 4, 8, 7, 6, 5, 8, 4, 2, 0, 9, 9, 7, 2, 9, 5, 1, 2, 5, 9, 3, 4, 3, 7, 5, 1, 6, 5, 7, 1, 0, 0, 4, 0, 1, 7, 0, 1, 4, 9, 9, 1, 1, 0, 0, 2, 1, 3, 1, 9, 7, 4, 4, 5, 3, 5, 2, 2, 5, 7, 3, 2, 9, 3, 2, 1, 5, 7, 0, 6, 5, 7, 9, 7, 0, 6, 4
OFFSET
1,2
LINKS
FORMULA
x = Sum_{n>=1} 1/A066173(n) where floor(x^n) = A066173(n).
EXAMPLE
Constant x = 1.7767914254 8765842099 7295125934 3751657100 4017014991 1002131974 4535225732 9321570657 9706460392 2109445017 4890160620 5702665489 ...
The integer floor of the powers of the constant x begin:
1=[x], 3=[x^2], 5=[x^3], 9=[x^4], 17=[x^5], 31=[x^6], 55=[x^7], 99=[x^8], 176=[x^9], 313=[x^10], ..., A066173(n) = [x^n], ...
where
x = 1/1 + 1/3 + 1/5 + 1/9 + 1/17 + 1/31 + 1/55 + 1/99 + 1/176 + 1/313 + 1/557 + 1/990 + 1/1759 + 1/3125 + 1/5553 + 1/9866 +...+ 1/[x^n] +...
MATHEMATICA
digits = 100; Clear[s]; s[m_] := s[m] = x /. FindRoot[x == Sum[1/Floor[x^n], {n, 1, m}], {x, 2, 1, 2}, WorkingPrecision -> digits]; s[0] = 0; dm = 100; s[m = dm]; While[ RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], m = m + dm; Print[m, " terms"]]; RealDigits[s[m], 10, digits] // First (* Jean-François Alcover, Jun 25 2013 *)
CROSSREFS
Cf. A066173.
Sequence in context: A280507 A059965 A124930 * A252799 A022619 A131685
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Sep 12 2011
STATUS
approved