|
|
A195202
|
|
Unique constant x that satisfies: x = Sum_{n>=1} 1/floor(x^n).
|
|
2
|
|
|
1, 7, 7, 6, 7, 9, 1, 4, 2, 5, 4, 8, 7, 6, 5, 8, 4, 2, 0, 9, 9, 7, 2, 9, 5, 1, 2, 5, 9, 3, 4, 3, 7, 5, 1, 6, 5, 7, 1, 0, 0, 4, 0, 1, 7, 0, 1, 4, 9, 9, 1, 1, 0, 0, 2, 1, 3, 1, 9, 7, 4, 4, 5, 3, 5, 2, 2, 5, 7, 3, 2, 9, 3, 2, 1, 5, 7, 0, 6, 5, 7, 9, 7, 0, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Constant x = 1.7767914254 8765842099 7295125934 3751657100 4017014991 1002131974 4535225732 9321570657 9706460392 2109445017 4890160620 5702665489 ...
The integer floor of the powers of the constant x begin:
1=[x], 3=[x^2], 5=[x^3], 9=[x^4], 17=[x^5], 31=[x^6], 55=[x^7], 99=[x^8], 176=[x^9], 313=[x^10], ..., A066173(n) = [x^n], ...
where
x = 1/1 + 1/3 + 1/5 + 1/9 + 1/17 + 1/31 + 1/55 + 1/99 + 1/176 + 1/313 + 1/557 + 1/990 + 1/1759 + 1/3125 + 1/5553 + 1/9866 +...+ 1/[x^n] +...
|
|
MATHEMATICA
|
digits = 100; Clear[s]; s[m_] := s[m] = x /. FindRoot[x == Sum[1/Floor[x^n], {n, 1, m}], {x, 2, 1, 2}, WorkingPrecision -> digits]; s[0] = 0; dm = 100; s[m = dm]; While[ RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], m = m + dm; Print[m, " terms"]]; RealDigits[s[m], 10, digits] // First (* Jean-François Alcover, Jun 25 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|